作为大鼠筒状皮层多须感受野起源的横向相互作用模型。

IF 2 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Journal of Computational Neuroscience Pub Date : 2022-05-01 Epub Date: 2021-12-01 DOI:10.1007/s10827-021-00804-6
Linda Ma, Mainak Patel
{"title":"作为大鼠筒状皮层多须感受野起源的横向相互作用模型。","authors":"Linda Ma,&nbsp;Mainak Patel","doi":"10.1007/s10827-021-00804-6","DOIUrl":null,"url":null,"abstract":"<p><p>While cells within barrel cortex respond primarily to deflections of their principal whisker (PW), they also exhibit responses to non-principal, or adjacent, whiskers (AWs), albeit responses with diminished amplitudes and longer latencies. The origin of multiwhisker receptive fields of barrel cells remains a point of controversy within the experimental literature, with three contending possibilities: (i) barrel cells inherit their AW responses from the AW responses of thalamocortical (TC) cells within their aligned barreloid; (ii) the axons of TC cells within a barreloid ramify to innervate multiple barrels, rather than only terminating within their aligned barrel; (iii) lateral intracortical transmission between barrels conveys AW responsivity to barrel cells. In this work, we develop a detailed, biologically plausible model of multiple barrels in order to examine possibility (iii); in order to isolate the dynamics that possibility (iii) entails, we incorporate lateral connections between barrels while assuming that TC cells respond only to their PW and that TC cell axons are confined to their home barrel. We show that our model is capable of capturing a broad swath of experimental observations on multiwhisker receptive field dynamics within barrels, and we compare and contrast the dynamics of this model with model dynamics from prior work in which employ a similar general modeling strategy to examine possibility (i).</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":"181-201"},"PeriodicalIF":2.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model of lateral interactions as the origin of multiwhisker receptive fields in rat barrel cortex.\",\"authors\":\"Linda Ma,&nbsp;Mainak Patel\",\"doi\":\"10.1007/s10827-021-00804-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While cells within barrel cortex respond primarily to deflections of their principal whisker (PW), they also exhibit responses to non-principal, or adjacent, whiskers (AWs), albeit responses with diminished amplitudes and longer latencies. The origin of multiwhisker receptive fields of barrel cells remains a point of controversy within the experimental literature, with three contending possibilities: (i) barrel cells inherit their AW responses from the AW responses of thalamocortical (TC) cells within their aligned barreloid; (ii) the axons of TC cells within a barreloid ramify to innervate multiple barrels, rather than only terminating within their aligned barrel; (iii) lateral intracortical transmission between barrels conveys AW responsivity to barrel cells. In this work, we develop a detailed, biologically plausible model of multiple barrels in order to examine possibility (iii); in order to isolate the dynamics that possibility (iii) entails, we incorporate lateral connections between barrels while assuming that TC cells respond only to their PW and that TC cell axons are confined to their home barrel. We show that our model is capable of capturing a broad swath of experimental observations on multiwhisker receptive field dynamics within barrels, and we compare and contrast the dynamics of this model with model dynamics from prior work in which employ a similar general modeling strategy to examine possibility (i).</p>\",\"PeriodicalId\":54857,\"journal\":{\"name\":\"Journal of Computational Neuroscience\",\"volume\":\" \",\"pages\":\"181-201\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10827-021-00804-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-021-00804-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虽然桶状皮层内的细胞主要对其主须(PW)的偏转做出反应,但它们也对非主须或相邻须(AWs)表现出反应,尽管反应幅度减弱,潜伏期延长。桶状细胞的多须感受野的起源在实验文献中仍然存在争议,有三种可能性:(i)桶状细胞从其排列的桶状体内的丘脑皮质(TC)细胞的AW反应中继承了AW反应;(ii)一个桶状体内TC细胞的轴突分叉,支配多个桶状体,而不是只在它们对齐的桶状体内终止;(iii)桶之间的横向皮质内传递将AW响应性传递给桶细胞。在这项工作中,我们开发了一个详细的,生物学上合理的多桶模型,以检查可能性(iii);为了分离可能性(iii)所需要的动力学,我们考虑了桶之间的横向连接,同时假设TC细胞仅对其PW作出反应,并且TC细胞轴突局限于其母桶。我们表明,我们的模型能够捕获桶内多须接受场动力学的广泛实验观察,并且我们将该模型的动力学与先前工作中的模型动力学进行比较和对比,其中采用了类似的一般建模策略来检查可能性(i)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A model of lateral interactions as the origin of multiwhisker receptive fields in rat barrel cortex.

While cells within barrel cortex respond primarily to deflections of their principal whisker (PW), they also exhibit responses to non-principal, or adjacent, whiskers (AWs), albeit responses with diminished amplitudes and longer latencies. The origin of multiwhisker receptive fields of barrel cells remains a point of controversy within the experimental literature, with three contending possibilities: (i) barrel cells inherit their AW responses from the AW responses of thalamocortical (TC) cells within their aligned barreloid; (ii) the axons of TC cells within a barreloid ramify to innervate multiple barrels, rather than only terminating within their aligned barrel; (iii) lateral intracortical transmission between barrels conveys AW responsivity to barrel cells. In this work, we develop a detailed, biologically plausible model of multiple barrels in order to examine possibility (iii); in order to isolate the dynamics that possibility (iii) entails, we incorporate lateral connections between barrels while assuming that TC cells respond only to their PW and that TC cell axons are confined to their home barrel. We show that our model is capable of capturing a broad swath of experimental observations on multiwhisker receptive field dynamics within barrels, and we compare and contrast the dynamics of this model with model dynamics from prior work in which employ a similar general modeling strategy to examine possibility (i).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
32
审稿时长
3 months
期刊介绍: The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信