具有易出错时间到事件结果的加速失效时间模型下的贝叶斯分析。

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Lifetime Data Analysis Pub Date : 2022-01-01 Epub Date: 2022-01-09 DOI:10.1007/s10985-021-09543-3
Yanlin Tang, Xinyuan Song, Grace Yun Yi
{"title":"具有易出错时间到事件结果的加速失效时间模型下的贝叶斯分析。","authors":"Yanlin Tang,&nbsp;Xinyuan Song,&nbsp;Grace Yun Yi","doi":"10.1007/s10985-021-09543-3","DOIUrl":null,"url":null,"abstract":"<p><p>We consider accelerated failure time models with error-prone time-to-event outcomes. The proposed models extend the conventional accelerated failure time model by allowing time-to-event responses to be subject to measurement errors. We describe two measurement error models, a logarithm transformation regression measurement error model and an additive error model with a positive increment, to delineate possible scenarios of measurement error in time-to-event outcomes. We develop Bayesian approaches to conduct statistical inference. Efficient Markov chain Monte Carlo algorithms are developed to facilitate the posterior inference. Extensive simulation studies are conducted to assess the performance of the proposed method, and an application to a study of Alzheimer's disease is presented.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"28 1","pages":"139-168"},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bayesian analysis under accelerated failure time models with error-prone time-to-event outcomes.\",\"authors\":\"Yanlin Tang,&nbsp;Xinyuan Song,&nbsp;Grace Yun Yi\",\"doi\":\"10.1007/s10985-021-09543-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider accelerated failure time models with error-prone time-to-event outcomes. The proposed models extend the conventional accelerated failure time model by allowing time-to-event responses to be subject to measurement errors. We describe two measurement error models, a logarithm transformation regression measurement error model and an additive error model with a positive increment, to delineate possible scenarios of measurement error in time-to-event outcomes. We develop Bayesian approaches to conduct statistical inference. Efficient Markov chain Monte Carlo algorithms are developed to facilitate the posterior inference. Extensive simulation studies are conducted to assess the performance of the proposed method, and an application to a study of Alzheimer's disease is presented.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":\"28 1\",\"pages\":\"139-168\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-021-09543-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-021-09543-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑具有容易出错的时间到事件结果的加速失效时间模型。提出的模型扩展了传统的加速失效时间模型,允许时间对事件的响应受到测量误差的影响。我们描述了两个测量误差模型,一个对数变换回归测量误差模型和一个正增量的加性误差模型,以描述测量误差在时间到事件结果中的可能情况。我们发展贝叶斯方法来进行统计推断。为了便于后验推理,开发了高效的马尔可夫链蒙特卡罗算法。广泛的仿真研究进行了评估所提出的方法的性能,并应用于阿尔茨海默病的研究提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian analysis under accelerated failure time models with error-prone time-to-event outcomes.

We consider accelerated failure time models with error-prone time-to-event outcomes. The proposed models extend the conventional accelerated failure time model by allowing time-to-event responses to be subject to measurement errors. We describe two measurement error models, a logarithm transformation regression measurement error model and an additive error model with a positive increment, to delineate possible scenarios of measurement error in time-to-event outcomes. We develop Bayesian approaches to conduct statistical inference. Efficient Markov chain Monte Carlo algorithms are developed to facilitate the posterior inference. Extensive simulation studies are conducted to assess the performance of the proposed method, and an application to a study of Alzheimer's disease is presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信