{"title":"具有易出错时间到事件结果的加速失效时间模型下的贝叶斯分析。","authors":"Yanlin Tang, Xinyuan Song, Grace Yun Yi","doi":"10.1007/s10985-021-09543-3","DOIUrl":null,"url":null,"abstract":"<p><p>We consider accelerated failure time models with error-prone time-to-event outcomes. The proposed models extend the conventional accelerated failure time model by allowing time-to-event responses to be subject to measurement errors. We describe two measurement error models, a logarithm transformation regression measurement error model and an additive error model with a positive increment, to delineate possible scenarios of measurement error in time-to-event outcomes. We develop Bayesian approaches to conduct statistical inference. Efficient Markov chain Monte Carlo algorithms are developed to facilitate the posterior inference. Extensive simulation studies are conducted to assess the performance of the proposed method, and an application to a study of Alzheimer's disease is presented.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"28 1","pages":"139-168"},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bayesian analysis under accelerated failure time models with error-prone time-to-event outcomes.\",\"authors\":\"Yanlin Tang, Xinyuan Song, Grace Yun Yi\",\"doi\":\"10.1007/s10985-021-09543-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider accelerated failure time models with error-prone time-to-event outcomes. The proposed models extend the conventional accelerated failure time model by allowing time-to-event responses to be subject to measurement errors. We describe two measurement error models, a logarithm transformation regression measurement error model and an additive error model with a positive increment, to delineate possible scenarios of measurement error in time-to-event outcomes. We develop Bayesian approaches to conduct statistical inference. Efficient Markov chain Monte Carlo algorithms are developed to facilitate the posterior inference. Extensive simulation studies are conducted to assess the performance of the proposed method, and an application to a study of Alzheimer's disease is presented.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":\"28 1\",\"pages\":\"139-168\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-021-09543-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-021-09543-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Bayesian analysis under accelerated failure time models with error-prone time-to-event outcomes.
We consider accelerated failure time models with error-prone time-to-event outcomes. The proposed models extend the conventional accelerated failure time model by allowing time-to-event responses to be subject to measurement errors. We describe two measurement error models, a logarithm transformation regression measurement error model and an additive error model with a positive increment, to delineate possible scenarios of measurement error in time-to-event outcomes. We develop Bayesian approaches to conduct statistical inference. Efficient Markov chain Monte Carlo algorithms are developed to facilitate the posterior inference. Extensive simulation studies are conducted to assess the performance of the proposed method, and an application to a study of Alzheimer's disease is presented.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.