通过增加对细胞受体间距和材料表面功能化的理解,推进细胞指导性生物材料。

IF 2.2 Q3 ENGINEERING, BIOMEDICAL
Stephanie A Maynard, Charles W Winter, Eoghan M Cunnane, Molly M Stevens
{"title":"通过增加对细胞受体间距和材料表面功能化的理解,推进细胞指导性生物材料。","authors":"Stephanie A Maynard,&nbsp;Charles W Winter,&nbsp;Eoghan M Cunnane,&nbsp;Molly M Stevens","doi":"10.1007/s40883-020-00180-0","DOIUrl":null,"url":null,"abstract":"<p><p>Regenerative medicine is aimed at restoring normal tissue function and can benefit from the application of tissue engineering and nano-therapeutics. In order for regenerative therapies to be effective, the spatiotemporal integration of tissue engineered scaffolds by the native tissue, and the binding/release of therapeutic payloads by nano-materials, must be tightly controlled at the nanoscale in order to direct cell fate. However, due to a lack of insight regarding cell-material interactions at the nanoscale and subsequent downstream signaling, the clinical translation of many regenerative therapies is limited due to poor material integration, rapid clearance and complications such as graft-versus-host disease. This review paper is intended to outline our current understanding of cell-material interactions with the aim of highlighting potential areas for knowledge advancement or application in the field of regenerative medicine. This is achieved by reviewing the nanoscale organization of key cell surface receptors, the current techniques used to control the presentation of cell-interactive molecules on material surfaces, as well as the most advanced techniques for characterizing the interactions that occur between cell surface receptors and materials intended for use in regenerative medicine.</p>","PeriodicalId":20936,"journal":{"name":"Regenerative Engineering and Translational Medicine","volume":"7 4","pages":"553-547"},"PeriodicalIF":2.2000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40883-020-00180-0","citationCount":"5","resultStr":"{\"title\":\"Advancing cell instructive biomaterials through increased understanding of cell receptor spacing and material surface functionalization.\",\"authors\":\"Stephanie A Maynard,&nbsp;Charles W Winter,&nbsp;Eoghan M Cunnane,&nbsp;Molly M Stevens\",\"doi\":\"10.1007/s40883-020-00180-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regenerative medicine is aimed at restoring normal tissue function and can benefit from the application of tissue engineering and nano-therapeutics. In order for regenerative therapies to be effective, the spatiotemporal integration of tissue engineered scaffolds by the native tissue, and the binding/release of therapeutic payloads by nano-materials, must be tightly controlled at the nanoscale in order to direct cell fate. However, due to a lack of insight regarding cell-material interactions at the nanoscale and subsequent downstream signaling, the clinical translation of many regenerative therapies is limited due to poor material integration, rapid clearance and complications such as graft-versus-host disease. This review paper is intended to outline our current understanding of cell-material interactions with the aim of highlighting potential areas for knowledge advancement or application in the field of regenerative medicine. This is achieved by reviewing the nanoscale organization of key cell surface receptors, the current techniques used to control the presentation of cell-interactive molecules on material surfaces, as well as the most advanced techniques for characterizing the interactions that occur between cell surface receptors and materials intended for use in regenerative medicine.</p>\",\"PeriodicalId\":20936,\"journal\":{\"name\":\"Regenerative Engineering and Translational Medicine\",\"volume\":\"7 4\",\"pages\":\"553-547\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40883-020-00180-0\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Engineering and Translational Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40883-020-00180-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Engineering and Translational Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40883-020-00180-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5

摘要

再生医学旨在恢复正常的组织功能,可以受益于组织工程和纳米治疗的应用。为了使再生疗法有效,必须在纳米尺度上严格控制组织工程支架与天然组织的时空整合,以及纳米材料对治疗有效载荷的结合/释放,以指导细胞的命运。然而,由于缺乏对纳米尺度上细胞-物质相互作用和随后的下游信号传导的认识,许多再生疗法的临床翻译由于材料整合不良、快速清除和诸如移植物抗宿主病等并发症而受到限制。这篇综述文章旨在概述我们目前对细胞-物质相互作用的理解,以突出在再生医学领域知识进步或应用的潜在领域。这是通过回顾关键细胞表面受体的纳米级组织,当前用于控制材料表面细胞相互作用分子呈现的技术,以及用于表征细胞表面受体和用于再生医学的材料之间发生的相互作用的最先进技术来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancing cell instructive biomaterials through increased understanding of cell receptor spacing and material surface functionalization.

Advancing cell instructive biomaterials through increased understanding of cell receptor spacing and material surface functionalization.

Advancing cell instructive biomaterials through increased understanding of cell receptor spacing and material surface functionalization.

Regenerative medicine is aimed at restoring normal tissue function and can benefit from the application of tissue engineering and nano-therapeutics. In order for regenerative therapies to be effective, the spatiotemporal integration of tissue engineered scaffolds by the native tissue, and the binding/release of therapeutic payloads by nano-materials, must be tightly controlled at the nanoscale in order to direct cell fate. However, due to a lack of insight regarding cell-material interactions at the nanoscale and subsequent downstream signaling, the clinical translation of many regenerative therapies is limited due to poor material integration, rapid clearance and complications such as graft-versus-host disease. This review paper is intended to outline our current understanding of cell-material interactions with the aim of highlighting potential areas for knowledge advancement or application in the field of regenerative medicine. This is achieved by reviewing the nanoscale organization of key cell surface receptors, the current techniques used to control the presentation of cell-interactive molecules on material surfaces, as well as the most advanced techniques for characterizing the interactions that occur between cell surface receptors and materials intended for use in regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
11.50%
发文量
41
期刊介绍: Regenerative Engineering is an international journal covering convergence of the disciplines of tissue engineering, advanced materials science, stem cell research, the physical sciences, and areas of developmental biology. This convergence brings exciting opportunities to translate bench-top research into bedside methods, allowing the possibility of moving beyond maintaining or repairing tissues to regenerating them. The journal encourages both top-down engineering approaches and bottom-up strategies integrating materials science with stem cell research and developmental biology. Convergence papers on instructive biomaterials, stimuli-responsive biomaterials, micro- and nano-patterning for regenerative engineering, elastomeric biomaterials, hydrogels for tissue engineering, and rapid prototyping and bioprinting approaches are particularly welcome. The journal provides a premier, single-blind peer-reviewed forum for the publication of original papers, authoritative reviews, rapid communications, news and views, and opinion papers addressing the most important issues and efforts toward successfully regenerating complex human tissues and organs. All research articles feature a lay abstract highlighting the relevance and future impact for patients, government and other health officials, and members of the general public. Bridging the gap between the lab and the clinic, the journal also serves as a dedicated platform for showcasing translational research that brings basic scientific research and discoveries into clinical methods and therapies, contributing to the improvement of human health care. Topics covered in Regenerative Engineering and Translational Medicine include: Advanced materials science for regenerative and biomedical applicationsStem cells for tissue regenerationDrug delivery for tissue regenerationNanomaterials and nanobiotechnology for tissue regenerationStudies combining tissue engineering/regeneration with developmental biologyConvergence research in pre-clinical and clinical phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信