{"title":"用于同时电解-超声-电化学聚合的超声螺旋线圈电化学反应器及其在花粉清洗中的应用。","authors":"Kyoka Komaba, Hiromasa Goto","doi":"10.1080/15685551.2021.2003557","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical polymerization of aniline by a combination of ultrasonic waves and electrolysis of water was performed. This method involves three processes: 1) creation of O<sub>2</sub> micro bubbles produced by electrolysis of water on the anode side, 2) depolarization of the bubbles at the electrode surface via mechanical vibration using ultrasonic waves to diffuse ions in the electrolyte solution, and 3) progression of direct current (DC) electrochemical polymerization to yield a conductive polymer with fine pores on the surface. The diameter of the pores is on the micrometer scale and is similar in size to pollens. The combination of the electronic function of the conductive polymer and porous polymer surface can be applied as a method to collect allergens such as dust and flower pollens. Electrical adsorption and desorption of pollen was conducted with the porous polyaniline synthesized using a micro-bubble sonic-electrochemical preparation.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604489/pdf/","citationCount":"3","resultStr":"{\"title\":\"Ultrasonic helical coil electrochemical reactor for simultaneous electrolysis-sonification-electrochemical polymerization, and applications for pollen cleaning.\",\"authors\":\"Kyoka Komaba, Hiromasa Goto\",\"doi\":\"10.1080/15685551.2021.2003557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrochemical polymerization of aniline by a combination of ultrasonic waves and electrolysis of water was performed. This method involves three processes: 1) creation of O<sub>2</sub> micro bubbles produced by electrolysis of water on the anode side, 2) depolarization of the bubbles at the electrode surface via mechanical vibration using ultrasonic waves to diffuse ions in the electrolyte solution, and 3) progression of direct current (DC) electrochemical polymerization to yield a conductive polymer with fine pores on the surface. The diameter of the pores is on the micrometer scale and is similar in size to pollens. The combination of the electronic function of the conductive polymer and porous polymer surface can be applied as a method to collect allergens such as dust and flower pollens. Electrical adsorption and desorption of pollen was conducted with the porous polyaniline synthesized using a micro-bubble sonic-electrochemical preparation.</p>\",\"PeriodicalId\":11170,\"journal\":{\"name\":\"Designed Monomers and Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604489/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designed Monomers and Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15685551.2021.2003557\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2021.2003557","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Ultrasonic helical coil electrochemical reactor for simultaneous electrolysis-sonification-electrochemical polymerization, and applications for pollen cleaning.
Electrochemical polymerization of aniline by a combination of ultrasonic waves and electrolysis of water was performed. This method involves three processes: 1) creation of O2 micro bubbles produced by electrolysis of water on the anode side, 2) depolarization of the bubbles at the electrode surface via mechanical vibration using ultrasonic waves to diffuse ions in the electrolyte solution, and 3) progression of direct current (DC) electrochemical polymerization to yield a conductive polymer with fine pores on the surface. The diameter of the pores is on the micrometer scale and is similar in size to pollens. The combination of the electronic function of the conductive polymer and porous polymer surface can be applied as a method to collect allergens such as dust and flower pollens. Electrical adsorption and desorption of pollen was conducted with the porous polyaniline synthesized using a micro-bubble sonic-electrochemical preparation.
期刊介绍:
Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work.
The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications.
DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to:
-macromolecular science, initiators, macroinitiators for macromolecular design
-kinetics, mechanism and modelling aspects of polymerization
-new methods of synthesis of known monomers
-new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization)
-functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers
-new polymeric materials with biomedical applications