Luka Ðorđević, Francesca Arcudi, Michele Cacioppo, Maurizio Prato
{"title":"为生物医学和能源应用设计碳点的多功能化学工具箱","authors":"Luka Ðorđević, Francesca Arcudi, Michele Cacioppo, Maurizio Prato","doi":"10.1038/s41565-021-01051-7","DOIUrl":null,"url":null,"abstract":"Photoluminescent carbon nanoparticles, or carbon dots, are an emerging class of materials that has recently attracted considerable attention for biomedical and energy applications. They are defined by characteristic sizes of <10 nm, a carbon-based core and the possibility to add various functional groups at their surface for targeted applications. These nanomaterials possess many interesting physicochemical and optical properties, which include tunable light emission, dispersibility and low toxicity. In this Review, we categorize how chemical tools impact the properties of carbon dots. We look for pre- and postsynthetic approaches for the preparation of carbon dots and their derivatives or composites. We then showcase examples to correlate structure, composition and function and use them to discuss the future development of this class of nanomaterials. This Review discusses synthetic strategies to functionalize photoluminescent carbon nanomaterials, or carbon dots, for targeted applications.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"17 2","pages":"112-130"},"PeriodicalIF":38.1000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"245","resultStr":"{\"title\":\"A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications\",\"authors\":\"Luka Ðorđević, Francesca Arcudi, Michele Cacioppo, Maurizio Prato\",\"doi\":\"10.1038/s41565-021-01051-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoluminescent carbon nanoparticles, or carbon dots, are an emerging class of materials that has recently attracted considerable attention for biomedical and energy applications. They are defined by characteristic sizes of <10 nm, a carbon-based core and the possibility to add various functional groups at their surface for targeted applications. These nanomaterials possess many interesting physicochemical and optical properties, which include tunable light emission, dispersibility and low toxicity. In this Review, we categorize how chemical tools impact the properties of carbon dots. We look for pre- and postsynthetic approaches for the preparation of carbon dots and their derivatives or composites. We then showcase examples to correlate structure, composition and function and use them to discuss the future development of this class of nanomaterials. This Review discusses synthetic strategies to functionalize photoluminescent carbon nanomaterials, or carbon dots, for targeted applications.\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"17 2\",\"pages\":\"112-130\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"245\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41565-021-01051-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-021-01051-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications
Photoluminescent carbon nanoparticles, or carbon dots, are an emerging class of materials that has recently attracted considerable attention for biomedical and energy applications. They are defined by characteristic sizes of <10 nm, a carbon-based core and the possibility to add various functional groups at their surface for targeted applications. These nanomaterials possess many interesting physicochemical and optical properties, which include tunable light emission, dispersibility and low toxicity. In this Review, we categorize how chemical tools impact the properties of carbon dots. We look for pre- and postsynthetic approaches for the preparation of carbon dots and their derivatives or composites. We then showcase examples to correlate structure, composition and function and use them to discuss the future development of this class of nanomaterials. This Review discusses synthetic strategies to functionalize photoluminescent carbon nanomaterials, or carbon dots, for targeted applications.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.