超临界表面拟地转方程奇异集维数的估计

IF 2.4 1区 数学 Q1 MATHEMATICS
Maria Colombo, Silja Haffter
{"title":"超临界表面拟地转方程奇异集维数的估计","authors":"Maria Colombo,&nbsp;Silja Haffter","doi":"10.1007/s40818-021-00093-3","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the SQG equation with dissipation given by a fractional Laplacian of order <span>\\(\\alpha &lt;\\frac{1}{2}\\)</span>. We introduce a notion of suitable weak solution, which exists for every <span>\\(L^2\\)</span> initial datum, and we prove that for such solution the singular set is contained in a compact set in spacetime of Hausdorff dimension at most <span>\\(\\frac{1}{2\\alpha } \\left( \\frac{1+\\alpha }{\\alpha } (1-2\\alpha ) + 2\\right) \\)</span>.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"7 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40818-021-00093-3","citationCount":"4","resultStr":"{\"title\":\"Estimate on the Dimension of the Singular Set of the Supercritical Surface Quasigeostrophic Equation\",\"authors\":\"Maria Colombo,&nbsp;Silja Haffter\",\"doi\":\"10.1007/s40818-021-00093-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the SQG equation with dissipation given by a fractional Laplacian of order <span>\\\\(\\\\alpha &lt;\\\\frac{1}{2}\\\\)</span>. We introduce a notion of suitable weak solution, which exists for every <span>\\\\(L^2\\\\)</span> initial datum, and we prove that for such solution the singular set is contained in a compact set in spacetime of Hausdorff dimension at most <span>\\\\(\\\\frac{1}{2\\\\alpha } \\\\left( \\\\frac{1+\\\\alpha }{\\\\alpha } (1-2\\\\alpha ) + 2\\\\right) \\\\)</span>.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40818-021-00093-3\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-021-00093-3\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00093-3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑由阶分数拉普拉斯算子给出的具有耗散的SQG方程。我们引入了一个适当弱解的概念,它存在于每个\(L^2)初始数据,并且我们证明了对于这种解,奇异集最多包含在Hausdorff维数的时空中的紧致集中\。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimate on the Dimension of the Singular Set of the Supercritical Surface Quasigeostrophic Equation

We consider the SQG equation with dissipation given by a fractional Laplacian of order \(\alpha <\frac{1}{2}\). We introduce a notion of suitable weak solution, which exists for every \(L^2\) initial datum, and we prove that for such solution the singular set is contained in a compact set in spacetime of Hausdorff dimension at most \(\frac{1}{2\alpha } \left( \frac{1+\alpha }{\alpha } (1-2\alpha ) + 2\right) \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信