较早的峰值潜伏期可能不能完全反映颈前庭诱发肌源电位对ce啁啾刺激的稳健性。

IF 1.1 Q3 OTORHINOLARYNGOLOGY
Journal of Audiology and Otology Pub Date : 2022-04-01 Epub Date: 2021-12-20 DOI:10.7874/jao.2021.00458
Mohd Normani Zakaria, Athar Mazen Rasmi Abdallatif, Wan Najibah Wan Mohamad, Rosdan Salim, Ahmad Aidil Arafat Dzulkarnain
{"title":"较早的峰值潜伏期可能不能完全反映颈前庭诱发肌源电位对ce啁啾刺激的稳健性。","authors":"Mohd Normani Zakaria, Athar Mazen Rasmi Abdallatif, Wan Najibah Wan Mohamad, Rosdan Salim, Ahmad Aidil Arafat Dzulkarnain","doi":"10.7874/jao.2021.00458","DOIUrl":null,"url":null,"abstract":"Dear Editor, We read with great interest the article by Ocal, et al. [1] that studied cervical vestibular evoked myogenic potential (cVEMP) results elicited by the conventional 500 Hz tone burst (TB) and narrow band Claus Elberling (CE)-chirp stimulus (360-720 Hz) among heathy adults. The chirp stimulus was found to produce significantly earlier P1 and N1 latencies, but P1N1 amplitudes were comparable between the two stimuli. The authors then concluded that “the chirp stimulus produces robust but earlier cVEMP than TB does” [1]. In this regard, we wish to highlight several issues worthy of consideration. The cVEMP latencies are influenced by the rise times of stimuli [2,3]. That is, stimuli with short rise times (such as clicks) would produce cVEMP with earlier latencies [2,3]. This is possibly because the otolith organs are sensitive to changes in acceleration over time [4]. The earlier cVEMP latencies for the chirp stimulus reported by Ocal, et al. [1] appear “insensible” and a further consideration is needed. The narrow band CE-chirp stimulus was designed with a specific envelope (and its onset is not steep) [5]. As such, it is expected that the chirp-evoked cVEMP would produce longer P1 and N1 latencies than the click-evoked cVEMP. This contemplation, in fact, has been demonstrated by Walther and Cebulla [6]. Since the commercially available CE-chirp stimuli were designed to optimally record auditory brainstem response (ABR), Walther and Cebulla [6] designed a band limited chirp stimulus (250-1,000 Hz) to record cVEMP and ocular vestibular evoked myogenic potential (oVEMP). As reported, cVEMP and oVEMP latencies were the longest for the chirp stimulus (relative to click and 500 Hz TB). Indeed, the earliest latencies were produced by the click stimulus [6]. In the study by Ocal, et al. [1], the earlier P1 and N1 latencies found with the narrow band CE-chirp stimulus (relative to the 500 Hz TB) were “unexpected” given the waveform and envelope of the two stimuli (i.e., the onset of both stimuli is not “equally” steep). Furthermore, the P1 latency was curiously early (around 10 ms), which is not consistent with studies utilizing clicks (stimuli with the steepest onset) [3,6]. Taken together, it appears that caution is advisable when using the CE-chirp stimulus in cVEMP recording. This stimulus was constructed to optimize ABR recording [5], and it may not “work” similarly in cVEMP recording. Moreover, the onset and offset times of CE-chirp stimulus were temporally “adjusted” during its construction so that it appears earlier than the conventional stimulus [7,8]. As such, the offset of chirp is the onset of click (0 ms) [7]. Therefore, it is not surprising to see earlier cVEMP latencies when tested with the CE-chirp stimulus. In contrast, using the custom-built chirp stimulus (without the temporal adjustment), cVEMP latencies were at least comparable to those of 500 Hz TB [6]. Collectively, the earlier cVEMP latencies elicited by the commercially available narrow band CE-chirp stimulus may not fully reflect the response robustness. When recording cVEMP Earlier Peak Latencies May Not Fully Reflect the Robustness of Cervical Vestibular Evoked Myogenic Potential to CE-Chirp Stimulus","PeriodicalId":44886,"journal":{"name":"Journal of Audiology and Otology","volume":"26 2","pages":"108-109"},"PeriodicalIF":1.1000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/df/c5/jao-2021-00458.PMC8996091.pdf","citationCount":"0","resultStr":"{\"title\":\"Earlier Peak Latencies May Not Fully Reflect the Robustness of Cervical Vestibular Evoked Myogenic Potential to CE-Chirp Stimulus.\",\"authors\":\"Mohd Normani Zakaria, Athar Mazen Rasmi Abdallatif, Wan Najibah Wan Mohamad, Rosdan Salim, Ahmad Aidil Arafat Dzulkarnain\",\"doi\":\"10.7874/jao.2021.00458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dear Editor, We read with great interest the article by Ocal, et al. [1] that studied cervical vestibular evoked myogenic potential (cVEMP) results elicited by the conventional 500 Hz tone burst (TB) and narrow band Claus Elberling (CE)-chirp stimulus (360-720 Hz) among heathy adults. The chirp stimulus was found to produce significantly earlier P1 and N1 latencies, but P1N1 amplitudes were comparable between the two stimuli. The authors then concluded that “the chirp stimulus produces robust but earlier cVEMP than TB does” [1]. In this regard, we wish to highlight several issues worthy of consideration. The cVEMP latencies are influenced by the rise times of stimuli [2,3]. That is, stimuli with short rise times (such as clicks) would produce cVEMP with earlier latencies [2,3]. This is possibly because the otolith organs are sensitive to changes in acceleration over time [4]. The earlier cVEMP latencies for the chirp stimulus reported by Ocal, et al. [1] appear “insensible” and a further consideration is needed. The narrow band CE-chirp stimulus was designed with a specific envelope (and its onset is not steep) [5]. As such, it is expected that the chirp-evoked cVEMP would produce longer P1 and N1 latencies than the click-evoked cVEMP. This contemplation, in fact, has been demonstrated by Walther and Cebulla [6]. Since the commercially available CE-chirp stimuli were designed to optimally record auditory brainstem response (ABR), Walther and Cebulla [6] designed a band limited chirp stimulus (250-1,000 Hz) to record cVEMP and ocular vestibular evoked myogenic potential (oVEMP). As reported, cVEMP and oVEMP latencies were the longest for the chirp stimulus (relative to click and 500 Hz TB). Indeed, the earliest latencies were produced by the click stimulus [6]. In the study by Ocal, et al. [1], the earlier P1 and N1 latencies found with the narrow band CE-chirp stimulus (relative to the 500 Hz TB) were “unexpected” given the waveform and envelope of the two stimuli (i.e., the onset of both stimuli is not “equally” steep). Furthermore, the P1 latency was curiously early (around 10 ms), which is not consistent with studies utilizing clicks (stimuli with the steepest onset) [3,6]. Taken together, it appears that caution is advisable when using the CE-chirp stimulus in cVEMP recording. This stimulus was constructed to optimize ABR recording [5], and it may not “work” similarly in cVEMP recording. Moreover, the onset and offset times of CE-chirp stimulus were temporally “adjusted” during its construction so that it appears earlier than the conventional stimulus [7,8]. As such, the offset of chirp is the onset of click (0 ms) [7]. Therefore, it is not surprising to see earlier cVEMP latencies when tested with the CE-chirp stimulus. In contrast, using the custom-built chirp stimulus (without the temporal adjustment), cVEMP latencies were at least comparable to those of 500 Hz TB [6]. Collectively, the earlier cVEMP latencies elicited by the commercially available narrow band CE-chirp stimulus may not fully reflect the response robustness. When recording cVEMP Earlier Peak Latencies May Not Fully Reflect the Robustness of Cervical Vestibular Evoked Myogenic Potential to CE-Chirp Stimulus\",\"PeriodicalId\":44886,\"journal\":{\"name\":\"Journal of Audiology and Otology\",\"volume\":\"26 2\",\"pages\":\"108-109\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/df/c5/jao-2021-00458.PMC8996091.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Audiology and Otology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7874/jao.2021.00458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"OTORHINOLARYNGOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Audiology and Otology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7874/jao.2021.00458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Earlier Peak Latencies May Not Fully Reflect the Robustness of Cervical Vestibular Evoked Myogenic Potential to CE-Chirp Stimulus.
Dear Editor, We read with great interest the article by Ocal, et al. [1] that studied cervical vestibular evoked myogenic potential (cVEMP) results elicited by the conventional 500 Hz tone burst (TB) and narrow band Claus Elberling (CE)-chirp stimulus (360-720 Hz) among heathy adults. The chirp stimulus was found to produce significantly earlier P1 and N1 latencies, but P1N1 amplitudes were comparable between the two stimuli. The authors then concluded that “the chirp stimulus produces robust but earlier cVEMP than TB does” [1]. In this regard, we wish to highlight several issues worthy of consideration. The cVEMP latencies are influenced by the rise times of stimuli [2,3]. That is, stimuli with short rise times (such as clicks) would produce cVEMP with earlier latencies [2,3]. This is possibly because the otolith organs are sensitive to changes in acceleration over time [4]. The earlier cVEMP latencies for the chirp stimulus reported by Ocal, et al. [1] appear “insensible” and a further consideration is needed. The narrow band CE-chirp stimulus was designed with a specific envelope (and its onset is not steep) [5]. As such, it is expected that the chirp-evoked cVEMP would produce longer P1 and N1 latencies than the click-evoked cVEMP. This contemplation, in fact, has been demonstrated by Walther and Cebulla [6]. Since the commercially available CE-chirp stimuli were designed to optimally record auditory brainstem response (ABR), Walther and Cebulla [6] designed a band limited chirp stimulus (250-1,000 Hz) to record cVEMP and ocular vestibular evoked myogenic potential (oVEMP). As reported, cVEMP and oVEMP latencies were the longest for the chirp stimulus (relative to click and 500 Hz TB). Indeed, the earliest latencies were produced by the click stimulus [6]. In the study by Ocal, et al. [1], the earlier P1 and N1 latencies found with the narrow band CE-chirp stimulus (relative to the 500 Hz TB) were “unexpected” given the waveform and envelope of the two stimuli (i.e., the onset of both stimuli is not “equally” steep). Furthermore, the P1 latency was curiously early (around 10 ms), which is not consistent with studies utilizing clicks (stimuli with the steepest onset) [3,6]. Taken together, it appears that caution is advisable when using the CE-chirp stimulus in cVEMP recording. This stimulus was constructed to optimize ABR recording [5], and it may not “work” similarly in cVEMP recording. Moreover, the onset and offset times of CE-chirp stimulus were temporally “adjusted” during its construction so that it appears earlier than the conventional stimulus [7,8]. As such, the offset of chirp is the onset of click (0 ms) [7]. Therefore, it is not surprising to see earlier cVEMP latencies when tested with the CE-chirp stimulus. In contrast, using the custom-built chirp stimulus (without the temporal adjustment), cVEMP latencies were at least comparable to those of 500 Hz TB [6]. Collectively, the earlier cVEMP latencies elicited by the commercially available narrow band CE-chirp stimulus may not fully reflect the response robustness. When recording cVEMP Earlier Peak Latencies May Not Fully Reflect the Robustness of Cervical Vestibular Evoked Myogenic Potential to CE-Chirp Stimulus
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Audiology and Otology
Journal of Audiology and Otology OTORHINOLARYNGOLOGY-
CiteScore
1.90
自引率
9.10%
发文量
20
期刊介绍: Journal of Audiology and Otology (JAO) (formerly known as Korean Journal of Audiology) aims to publish the most advanced findings for all aspects of the auditory and vestibular system and diseases of the ear using state-of-the-art techniques and analyses. The journal covers recent trends related to the topics of audiology, otology, and neurotology conducted by professionals, with the goal of providing better possible treatment to people of all ages, from infants to the elderly, who suffer from auditory and/or vestibular disorders and thus, improving their quality of life. This journal encourages the submission of review papers about current professional issues, research papers presenting a scientific base and clinical application, and case papers with unique reports or clinical trials. We also invite letters to the editor and papers related to the manufacture and distribution of medical devices. This journal provides integrated views from otologists, audiologists, and other healthcare practitioners, offering readers high quality scientific and clinical information. This peer-reviewed and open access journal has been the official journal of the Korean Audiological Society since 1997 and of both the Korean Audiological Society and the Korean Otological Society since 2017. It is published in English four times a year in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信