脑卒中后痉挛的比目鱼h反射变化:体位调节。

IF 3 4区 医学 Q2 NEUROSCIENCES
Neural Plasticity Pub Date : 2021-12-07 eCollection Date: 2021-01-01 DOI:10.1155/2021/9955153
Wenting Qin, Anjing Zhang, Mingzhen Yang, Chan Chen, Lijun Zhen, Hong Yang, Lingjing Jin, Fang Li
{"title":"脑卒中后痉挛的比目鱼h反射变化:体位调节。","authors":"Wenting Qin,&nbsp;Anjing Zhang,&nbsp;Mingzhen Yang,&nbsp;Chan Chen,&nbsp;Lijun Zhen,&nbsp;Hong Yang,&nbsp;Lingjing Jin,&nbsp;Fang Li","doi":"10.1155/2021/9955153","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study is aimed at exploring how soleus H-reflex change in poststroke patients with spasticity influenced by body position.</p><p><strong>Materials and methods: </strong>Twenty-four stroke patients with spastic hemiplegia and twelve age-matched healthy controls were investigated. Maximal Hoffmann-reflex (Hmax) and motor potential (Mmax) were elicited at the popliteal fossa in both prone and standing positions, respectively, and the Hmax/Mmax ratio at each body position was determined. Compare changes in reflex behavior in both spastic and contralateral muscles of stroke survivors in prone and standing positions, and match healthy subjects in the same position.</p><p><strong>Results: </strong>In healthy subjects, Hmax and Hmax/Mmax ratios were significantly decreased in the standing position compared to the prone position (Hmax: <i>p</i> = 0.000, Hmax/Mmax: <i>p</i> = 0.016). However, Hmax/Mmax ratios were increased in standing position on both sides in poststroke patients with spasticity (unaffected side: <i>p</i> = 0.006, affected side: <i>p</i> = 0.095). The Hmax and Hmax/Mmax ratios were significantly more increased on the affected side than unaffected side irrespective of the position.</p><p><strong>Conclusions: </strong>The motor neuron excitability of both sides was not suppressed but instead upregulated in the standing position in subjects with spasticity, which may suggest that there was abnormal regulation of the Ia pathway on both sides.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670919/pdf/","citationCount":"2","resultStr":"{\"title\":\"Soleus H-Reflex Change in Poststroke Spasticity: Modulation due to Body Position.\",\"authors\":\"Wenting Qin,&nbsp;Anjing Zhang,&nbsp;Mingzhen Yang,&nbsp;Chan Chen,&nbsp;Lijun Zhen,&nbsp;Hong Yang,&nbsp;Lingjing Jin,&nbsp;Fang Li\",\"doi\":\"10.1155/2021/9955153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study is aimed at exploring how soleus H-reflex change in poststroke patients with spasticity influenced by body position.</p><p><strong>Materials and methods: </strong>Twenty-four stroke patients with spastic hemiplegia and twelve age-matched healthy controls were investigated. Maximal Hoffmann-reflex (Hmax) and motor potential (Mmax) were elicited at the popliteal fossa in both prone and standing positions, respectively, and the Hmax/Mmax ratio at each body position was determined. Compare changes in reflex behavior in both spastic and contralateral muscles of stroke survivors in prone and standing positions, and match healthy subjects in the same position.</p><p><strong>Results: </strong>In healthy subjects, Hmax and Hmax/Mmax ratios were significantly decreased in the standing position compared to the prone position (Hmax: <i>p</i> = 0.000, Hmax/Mmax: <i>p</i> = 0.016). However, Hmax/Mmax ratios were increased in standing position on both sides in poststroke patients with spasticity (unaffected side: <i>p</i> = 0.006, affected side: <i>p</i> = 0.095). The Hmax and Hmax/Mmax ratios were significantly more increased on the affected side than unaffected side irrespective of the position.</p><p><strong>Conclusions: </strong>The motor neuron excitability of both sides was not suppressed but instead upregulated in the standing position in subjects with spasticity, which may suggest that there was abnormal regulation of the Ia pathway on both sides.</p>\",\"PeriodicalId\":51299,\"journal\":{\"name\":\"Neural Plasticity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670919/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Plasticity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/9955153\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2021/9955153","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

目的:探讨体位对脑卒中后痉挛患者比目鱼h反射的影响。材料与方法:选取24例脑卒中痉挛性偏瘫患者和12例年龄匹配的健康对照。在俯卧位和站立位分别激发腘窝最大霍夫曼反射(Hmax)和运动电位(Mmax),并测定各体位的Hmax/Mmax比值。比较中风幸存者在俯卧位和站立位时痉挛肌和对侧肌反射行为的变化,并匹配相同体位的健康受试者。结果:健康受试者站立位的Hmax和Hmax/Mmax比值明显低于俯卧位(Hmax: p = 0.000, Hmax/Mmax: p = 0.016)。而卒中后痉挛患者站立位时,两侧Hmax/Mmax比值均升高(未患侧:p = 0.006,患侧:p = 0.095)。不同体位,患侧的Hmax和Hmax/Mmax比值均显著高于未患侧。结论:痉挛受试者站立体位时双侧运动神经元兴奋性未被抑制,反而上调,可能提示双侧Ia通路存在异常调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Soleus H-Reflex Change in Poststroke Spasticity: Modulation due to Body Position.

Soleus H-Reflex Change in Poststroke Spasticity: Modulation due to Body Position.

Soleus H-Reflex Change in Poststroke Spasticity: Modulation due to Body Position.

Soleus H-Reflex Change in Poststroke Spasticity: Modulation due to Body Position.

Purpose: This study is aimed at exploring how soleus H-reflex change in poststroke patients with spasticity influenced by body position.

Materials and methods: Twenty-four stroke patients with spastic hemiplegia and twelve age-matched healthy controls were investigated. Maximal Hoffmann-reflex (Hmax) and motor potential (Mmax) were elicited at the popliteal fossa in both prone and standing positions, respectively, and the Hmax/Mmax ratio at each body position was determined. Compare changes in reflex behavior in both spastic and contralateral muscles of stroke survivors in prone and standing positions, and match healthy subjects in the same position.

Results: In healthy subjects, Hmax and Hmax/Mmax ratios were significantly decreased in the standing position compared to the prone position (Hmax: p = 0.000, Hmax/Mmax: p = 0.016). However, Hmax/Mmax ratios were increased in standing position on both sides in poststroke patients with spasticity (unaffected side: p = 0.006, affected side: p = 0.095). The Hmax and Hmax/Mmax ratios were significantly more increased on the affected side than unaffected side irrespective of the position.

Conclusions: The motor neuron excitability of both sides was not suppressed but instead upregulated in the standing position in subjects with spasticity, which may suggest that there was abnormal regulation of the Ia pathway on both sides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Plasticity
Neural Plasticity NEUROSCIENCES-
CiteScore
6.80
自引率
0.00%
发文量
77
审稿时长
16 weeks
期刊介绍: Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信