circHUWE1通过调控miR-34a-5p/TNFAIP8在诱导ddp耐药NSCLC进展中发挥致癌作用。

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
International Journal of Genomics Pub Date : 2021-12-03 eCollection Date: 2021-01-01 DOI:10.1155/2021/3997045
Xueliang Yang, Quan Sun, Yongming Song, Wenli Li
{"title":"circHUWE1通过调控miR-34a-5p/TNFAIP8在诱导ddp耐药NSCLC进展中发挥致癌作用。","authors":"Xueliang Yang,&nbsp;Quan Sun,&nbsp;Yongming Song,&nbsp;Wenli Li","doi":"10.1155/2021/3997045","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Circular RNAs (circRNAs) are reported as competing endogenous RNAs (ceRNAs) and play key roles in non-small-cell lung cancer (NSCLC) progression. Thus, this study was aimed at clarifying underlying molecular mechanisms of circHUWE1 in NSCLC.</p><p><strong>Methods: </strong>The quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analyses were used for examining circHUWE1, microRNA-34a-5p (miR-34a-5p), and tumor necrosis factor alpha-induced protein 8 (TNFAIP8). IC<sub>50</sub> of cisplatin (DDP) in A549/DDP and H1299/DDP cells and cell viability were analyzed by the Cell Counting Kit 8 (CCK-8) assay. Colony forming assay was performed to assess colony forming ability. Cell apoptosis and cell cycle distribution were determined by flow cytometry. Migrated and invaded cell numbers were examined by transwell assay. The association among circHUWE1, miR-34a-5p, and TNFAIP8 was analyzed by dual-luciferase reporter and RNA immunoprecipitation assays. A xenograft experiment was applied to clarify the functional role of circHUWE1 <i>in vivo</i>.</p><p><strong>Results: </strong>circHUWE1 was upregulated in NSCLC tissues and cells, especially in DDP-resistant groups. circHUWE1 downregulation inhibited DDP resistance, proliferation, migration, and invasion while it induced apoptosis and cell cycle arrest of DDP-resistant NSCLC cells, which was overturned by silencing of miR-34a-5p. TNFAIP8 was a functional gene of miR-34a-5p, and the suppressive effects of miR-34a-5p overexpression on DDP-resistant NSCLC progression were dependent on the suppression of TNFAIP8. circHUWE1 inhibition also delayed tumor growth of DDP-resistant NSCLC cells.</p><p><strong>Conclusion: </strong>circHUWE1 functioned as a promoter in DDP-resistant NSCLC by interaction with miR-34a-5p-TNFAIP8 networks, providing novel insight into DDP-resistant NSCLC diagnosis and treatment.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":"2021 ","pages":"3997045"},"PeriodicalIF":2.6000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664528/pdf/","citationCount":"4","resultStr":"{\"title\":\"circHUWE1 Exerts an Oncogenic Role in Inducing DDP-Resistant NSCLC Progression Depending on the Regulation of miR-34a-5p/TNFAIP8.\",\"authors\":\"Xueliang Yang,&nbsp;Quan Sun,&nbsp;Yongming Song,&nbsp;Wenli Li\",\"doi\":\"10.1155/2021/3997045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Circular RNAs (circRNAs) are reported as competing endogenous RNAs (ceRNAs) and play key roles in non-small-cell lung cancer (NSCLC) progression. Thus, this study was aimed at clarifying underlying molecular mechanisms of circHUWE1 in NSCLC.</p><p><strong>Methods: </strong>The quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analyses were used for examining circHUWE1, microRNA-34a-5p (miR-34a-5p), and tumor necrosis factor alpha-induced protein 8 (TNFAIP8). IC<sub>50</sub> of cisplatin (DDP) in A549/DDP and H1299/DDP cells and cell viability were analyzed by the Cell Counting Kit 8 (CCK-8) assay. Colony forming assay was performed to assess colony forming ability. Cell apoptosis and cell cycle distribution were determined by flow cytometry. Migrated and invaded cell numbers were examined by transwell assay. The association among circHUWE1, miR-34a-5p, and TNFAIP8 was analyzed by dual-luciferase reporter and RNA immunoprecipitation assays. A xenograft experiment was applied to clarify the functional role of circHUWE1 <i>in vivo</i>.</p><p><strong>Results: </strong>circHUWE1 was upregulated in NSCLC tissues and cells, especially in DDP-resistant groups. circHUWE1 downregulation inhibited DDP resistance, proliferation, migration, and invasion while it induced apoptosis and cell cycle arrest of DDP-resistant NSCLC cells, which was overturned by silencing of miR-34a-5p. TNFAIP8 was a functional gene of miR-34a-5p, and the suppressive effects of miR-34a-5p overexpression on DDP-resistant NSCLC progression were dependent on the suppression of TNFAIP8. circHUWE1 inhibition also delayed tumor growth of DDP-resistant NSCLC cells.</p><p><strong>Conclusion: </strong>circHUWE1 functioned as a promoter in DDP-resistant NSCLC by interaction with miR-34a-5p-TNFAIP8 networks, providing novel insight into DDP-resistant NSCLC diagnosis and treatment.</p>\",\"PeriodicalId\":13988,\"journal\":{\"name\":\"International Journal of Genomics\",\"volume\":\"2021 \",\"pages\":\"3997045\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664528/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/3997045\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2021/3997045","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

背景:环状rna (circRNAs)被报道为竞争内源性rna (ceRNAs),在非小细胞肺癌(NSCLC)进展中发挥关键作用。因此,本研究旨在阐明circHUWE1在非小细胞肺癌中的潜在分子机制。方法:采用实时定量聚合酶链反应(RT-qPCR)和western blot检测circHUWE1、microRNA-34a-5p (miR-34a-5p)和肿瘤坏死因子α诱导蛋白8 (TNFAIP8)。采用细胞计数试剂盒8 (CCK-8)检测A549/DDP和H1299/DDP细胞中顺铂(DDP)的IC50和细胞活力。采用菌落形成试验评价菌落形成能力。流式细胞术检测细胞凋亡和细胞周期分布。transwell法检测迁移和侵袭细胞数量。通过双荧光素酶报告基因和RNA免疫沉淀法分析circHUWE1、miR-34a-5p和TNFAIP8之间的关联。通过异种移植实验来阐明circHUWE1在体内的功能作用。结果:circHUWE1在NSCLC组织和细胞中表达上调,尤其是在ddp耐药组。circHUWE1下调抑制DDP耐药、增殖、迁移和侵袭,同时诱导DDP耐药NSCLC细胞凋亡和细胞周期阻滞,这一过程被miR-34a-5p沉默推翻。TNFAIP8是miR-34a-5p的功能基因,miR-34a-5p过表达对ddp耐药NSCLC进展的抑制作用依赖于对TNFAIP8的抑制。circHUWE1抑制也延迟了ddp耐药NSCLC细胞的肿瘤生长。结论:circHUWE1通过与miR-34a-5p-TNFAIP8网络相互作用,在ddp耐药NSCLC中发挥启动子作用,为ddp耐药NSCLC的诊断和治疗提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

circHUWE1 Exerts an Oncogenic Role in Inducing DDP-Resistant NSCLC Progression Depending on the Regulation of miR-34a-5p/TNFAIP8.

circHUWE1 Exerts an Oncogenic Role in Inducing DDP-Resistant NSCLC Progression Depending on the Regulation of miR-34a-5p/TNFAIP8.

circHUWE1 Exerts an Oncogenic Role in Inducing DDP-Resistant NSCLC Progression Depending on the Regulation of miR-34a-5p/TNFAIP8.

circHUWE1 Exerts an Oncogenic Role in Inducing DDP-Resistant NSCLC Progression Depending on the Regulation of miR-34a-5p/TNFAIP8.

Background: Circular RNAs (circRNAs) are reported as competing endogenous RNAs (ceRNAs) and play key roles in non-small-cell lung cancer (NSCLC) progression. Thus, this study was aimed at clarifying underlying molecular mechanisms of circHUWE1 in NSCLC.

Methods: The quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analyses were used for examining circHUWE1, microRNA-34a-5p (miR-34a-5p), and tumor necrosis factor alpha-induced protein 8 (TNFAIP8). IC50 of cisplatin (DDP) in A549/DDP and H1299/DDP cells and cell viability were analyzed by the Cell Counting Kit 8 (CCK-8) assay. Colony forming assay was performed to assess colony forming ability. Cell apoptosis and cell cycle distribution were determined by flow cytometry. Migrated and invaded cell numbers were examined by transwell assay. The association among circHUWE1, miR-34a-5p, and TNFAIP8 was analyzed by dual-luciferase reporter and RNA immunoprecipitation assays. A xenograft experiment was applied to clarify the functional role of circHUWE1 in vivo.

Results: circHUWE1 was upregulated in NSCLC tissues and cells, especially in DDP-resistant groups. circHUWE1 downregulation inhibited DDP resistance, proliferation, migration, and invasion while it induced apoptosis and cell cycle arrest of DDP-resistant NSCLC cells, which was overturned by silencing of miR-34a-5p. TNFAIP8 was a functional gene of miR-34a-5p, and the suppressive effects of miR-34a-5p overexpression on DDP-resistant NSCLC progression were dependent on the suppression of TNFAIP8. circHUWE1 inhibition also delayed tumor growth of DDP-resistant NSCLC cells.

Conclusion: circHUWE1 functioned as a promoter in DDP-resistant NSCLC by interaction with miR-34a-5p-TNFAIP8 networks, providing novel insight into DDP-resistant NSCLC diagnosis and treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Genomics
International Journal of Genomics BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
5.40
自引率
0.00%
发文量
33
审稿时长
17 weeks
期刊介绍: International Journal of Genomics is a peer-reviewed, Open Access journal that publishes research articles as well as review articles in all areas of genome-scale analysis. Topics covered by the journal include, but are not limited to: bioinformatics, clinical genomics, disease genomics, epigenomics, evolutionary genomics, functional genomics, genome engineering, and synthetic genomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信