Jasmine J Lin, Gromit Y Y Chan, Cláudio T Silva, Luis G Nonato, Preeti Raghavan, Aleksandra McGrath, Alice Chu
{"title":"18岁女性伸展臂丛分娩性麻痹斜方肌活动的运动分析。","authors":"Jasmine J Lin, Gromit Y Y Chan, Cláudio T Silva, Luis G Nonato, Preeti Raghavan, Aleksandra McGrath, Alice Chu","doi":"10.1055/s-0041-1731748","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b> The trapezius muscle is often utilized as a muscle or nerve donor for repairing shoulder function in those with brachial plexus birth palsy (BPBP). To evaluate the native role of the trapezius in the affected limb, we demonstrate use of the Motion Browser, a novel visual analytics system to assess an adolescent with BPBP. <b>Method</b> An 18-year-old female with extended upper trunk (C5-6-7) BPBP underwent bilateral upper extremity three-dimensional motion analysis with Motion Browser. Surface electromyography (EMG) from eight muscles in each limb which was recorded during six upper extremity movements, distinguishing between upper trapezius (UT) and lower trapezius (LT). The Motion Browser calculated active range of motion (AROM), compiled the EMG data into measures of muscle activity, and displayed the results in charts. <b>Results</b> All movements, excluding shoulder abduction, had similar AROM in affected and unaffected limbs. In the unaffected limb, LT was more active in proximal movements of shoulder abduction, and shoulder external and internal rotations. In the affected limb, LT was more active in distal movements of forearm pronation and supination; UT was more active in shoulder abduction. <b>Conclusion</b> In this female with BPBP, Motion Browser demonstrated that the native LT in the affected limb contributed to distal movements. Her results suggest that sacrificing her trapezius as a muscle or nerve donor may affect her distal functionality. Clinicians should exercise caution when considering nerve transfers in children with BPBP and consider individualized assessment of functionality before pursuing surgery.</p>","PeriodicalId":15280,"journal":{"name":"Journal of Brachial Plexus and Peripheral Nerve Injury","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548257/pdf/","citationCount":"0","resultStr":"{\"title\":\"Motion Analytics of Trapezius Muscle Activity in an 18-Year-Old Female with Extended Upper Brachial Plexus Birth Palsy.\",\"authors\":\"Jasmine J Lin, Gromit Y Y Chan, Cláudio T Silva, Luis G Nonato, Preeti Raghavan, Aleksandra McGrath, Alice Chu\",\"doi\":\"10.1055/s-0041-1731748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background</b> The trapezius muscle is often utilized as a muscle or nerve donor for repairing shoulder function in those with brachial plexus birth palsy (BPBP). To evaluate the native role of the trapezius in the affected limb, we demonstrate use of the Motion Browser, a novel visual analytics system to assess an adolescent with BPBP. <b>Method</b> An 18-year-old female with extended upper trunk (C5-6-7) BPBP underwent bilateral upper extremity three-dimensional motion analysis with Motion Browser. Surface electromyography (EMG) from eight muscles in each limb which was recorded during six upper extremity movements, distinguishing between upper trapezius (UT) and lower trapezius (LT). The Motion Browser calculated active range of motion (AROM), compiled the EMG data into measures of muscle activity, and displayed the results in charts. <b>Results</b> All movements, excluding shoulder abduction, had similar AROM in affected and unaffected limbs. In the unaffected limb, LT was more active in proximal movements of shoulder abduction, and shoulder external and internal rotations. In the affected limb, LT was more active in distal movements of forearm pronation and supination; UT was more active in shoulder abduction. <b>Conclusion</b> In this female with BPBP, Motion Browser demonstrated that the native LT in the affected limb contributed to distal movements. Her results suggest that sacrificing her trapezius as a muscle or nerve donor may affect her distal functionality. Clinicians should exercise caution when considering nerve transfers in children with BPBP and consider individualized assessment of functionality before pursuing surgery.</p>\",\"PeriodicalId\":15280,\"journal\":{\"name\":\"Journal of Brachial Plexus and Peripheral Nerve Injury\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548257/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Brachial Plexus and Peripheral Nerve Injury\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0041-1731748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Brachial Plexus and Peripheral Nerve Injury","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0041-1731748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Motion Analytics of Trapezius Muscle Activity in an 18-Year-Old Female with Extended Upper Brachial Plexus Birth Palsy.
Background The trapezius muscle is often utilized as a muscle or nerve donor for repairing shoulder function in those with brachial plexus birth palsy (BPBP). To evaluate the native role of the trapezius in the affected limb, we demonstrate use of the Motion Browser, a novel visual analytics system to assess an adolescent with BPBP. Method An 18-year-old female with extended upper trunk (C5-6-7) BPBP underwent bilateral upper extremity three-dimensional motion analysis with Motion Browser. Surface electromyography (EMG) from eight muscles in each limb which was recorded during six upper extremity movements, distinguishing between upper trapezius (UT) and lower trapezius (LT). The Motion Browser calculated active range of motion (AROM), compiled the EMG data into measures of muscle activity, and displayed the results in charts. Results All movements, excluding shoulder abduction, had similar AROM in affected and unaffected limbs. In the unaffected limb, LT was more active in proximal movements of shoulder abduction, and shoulder external and internal rotations. In the affected limb, LT was more active in distal movements of forearm pronation and supination; UT was more active in shoulder abduction. Conclusion In this female with BPBP, Motion Browser demonstrated that the native LT in the affected limb contributed to distal movements. Her results suggest that sacrificing her trapezius as a muscle or nerve donor may affect her distal functionality. Clinicians should exercise caution when considering nerve transfers in children with BPBP and consider individualized assessment of functionality before pursuing surgery.
期刊介绍:
JBPPNI is an open access, peer-reviewed online journal that will encompass all aspects of basic and clinical research findings, in the area of brachial plexus and peripheral nerve injury. Injury in this context refers to congenital, inflammatory, traumatic, degenerative and neoplastic processes, including neurofibromatosis. Papers on diagnostic and imaging aspects of the peripheral nervous system are welcomed as well. The peripheral nervous system is unique in its complexity and scope of influence. There are areas of interest in the anatomy, physiology, metabolism, phylogeny, and limb growth tropism of peripheral nerves.