Daniella Fehér, Andrea Ferencz, Györgyi Szabó, Krisztina Juhos, Domokos Csukás, Constantinos Voniatis, Lilla Reininger, Kristóf Molnár, Angéla Jedlovszky-Hajdú, György Wéber
{"title":"可吸收聚乙烯醇疝补片对组织重建的早期和晚期影响。","authors":"Daniella Fehér, Andrea Ferencz, Györgyi Szabó, Krisztina Juhos, Domokos Csukás, Constantinos Voniatis, Lilla Reininger, Kristóf Molnár, Angéla Jedlovszky-Hajdú, György Wéber","doi":"10.1049/nbt2.12015","DOIUrl":null,"url":null,"abstract":"<p><p>Hernia is a defect of the abdominal wall. Treatment is principally surgical mesh implantation. Non-degradable surgical meshes produce numerous complications and side-effects such as inflammatory response, mesh migration and chronic pain. In contrast, the biodegradable, poly (vinyl alcohol) (PVA) based polymers have excellent chemical, mechanical and biological properties and after their degradation no chronic pain can be expected. The toxicology of PVA solution and fibers was investigated with Human dermal fibroblast- Adult cell line. Implantation tests were observed on long-term contact (rat) and large animal (swine) models. To measure the adhesion formation, Diamond and Vandendael score were used. Macroscopical and histological responses were graded from the samples. In vitro examination showed that PVA solution and fibers are biocompatible for the cells. According to the implantation tests, all samples were integrated into the surrounding tissue, and there was no foreign body reaction. The average number of adhesions was found on the non-absorbable suture line. The biocompatibility of the PVA nanofiber mesh was demonstrated. It has a non-adhesive, non-toxic and good quality structure which has the potential to be an alternative solution for the part of the hernia mesh.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675808/pdf/","citationCount":"3","resultStr":"{\"title\":\"Early and late effects of absorbable poly(vinyl alcohol) hernia mesh to tissue reconstruction.\",\"authors\":\"Daniella Fehér, Andrea Ferencz, Györgyi Szabó, Krisztina Juhos, Domokos Csukás, Constantinos Voniatis, Lilla Reininger, Kristóf Molnár, Angéla Jedlovszky-Hajdú, György Wéber\",\"doi\":\"10.1049/nbt2.12015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hernia is a defect of the abdominal wall. Treatment is principally surgical mesh implantation. Non-degradable surgical meshes produce numerous complications and side-effects such as inflammatory response, mesh migration and chronic pain. In contrast, the biodegradable, poly (vinyl alcohol) (PVA) based polymers have excellent chemical, mechanical and biological properties and after their degradation no chronic pain can be expected. The toxicology of PVA solution and fibers was investigated with Human dermal fibroblast- Adult cell line. Implantation tests were observed on long-term contact (rat) and large animal (swine) models. To measure the adhesion formation, Diamond and Vandendael score were used. Macroscopical and histological responses were graded from the samples. In vitro examination showed that PVA solution and fibers are biocompatible for the cells. According to the implantation tests, all samples were integrated into the surrounding tissue, and there was no foreign body reaction. The average number of adhesions was found on the non-absorbable suture line. The biocompatibility of the PVA nanofiber mesh was demonstrated. It has a non-adhesive, non-toxic and good quality structure which has the potential to be an alternative solution for the part of the hernia mesh.</p>\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675808/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1049/nbt2.12015\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/nbt2.12015","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Early and late effects of absorbable poly(vinyl alcohol) hernia mesh to tissue reconstruction.
Hernia is a defect of the abdominal wall. Treatment is principally surgical mesh implantation. Non-degradable surgical meshes produce numerous complications and side-effects such as inflammatory response, mesh migration and chronic pain. In contrast, the biodegradable, poly (vinyl alcohol) (PVA) based polymers have excellent chemical, mechanical and biological properties and after their degradation no chronic pain can be expected. The toxicology of PVA solution and fibers was investigated with Human dermal fibroblast- Adult cell line. Implantation tests were observed on long-term contact (rat) and large animal (swine) models. To measure the adhesion formation, Diamond and Vandendael score were used. Macroscopical and histological responses were graded from the samples. In vitro examination showed that PVA solution and fibers are biocompatible for the cells. According to the implantation tests, all samples were integrated into the surrounding tissue, and there was no foreign body reaction. The average number of adhesions was found on the non-absorbable suture line. The biocompatibility of the PVA nanofiber mesh was demonstrated. It has a non-adhesive, non-toxic and good quality structure which has the potential to be an alternative solution for the part of the hernia mesh.
期刊介绍:
Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level.
Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries.
IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to:
Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques)
Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology
Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools)
Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles)
Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance
Techniques for probing cell physiology, cell adhesion sites and cell-cell communication
Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology
Societal issues such as health and the environment
Special issues. Call for papers:
Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf
Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf