用生物活性复合水凝胶对长碳纤维增强聚醚醚酮进行表面改性,获得有效的成骨效果

IF 8.1 1区 工程技术 Q1 MATERIALS SCIENCE, BIOMATERIALS
Wenying Dong , Wendi Ma , Shanshan Zhao , Yilong Wang , Jihang Yao , Zhewen Liu , Zheng Chen , Dahui Sun , Zhenhua Jiang , Mei Zhang
{"title":"用生物活性复合水凝胶对长碳纤维增强聚醚醚酮进行表面改性,获得有效的成骨效果","authors":"Wenying Dong ,&nbsp;Wendi Ma ,&nbsp;Shanshan Zhao ,&nbsp;Yilong Wang ,&nbsp;Jihang Yao ,&nbsp;Zhewen Liu ,&nbsp;Zheng Chen ,&nbsp;Dahui Sun ,&nbsp;Zhenhua Jiang ,&nbsp;Mei Zhang","doi":"10.1016/j.msec.2021.112451","DOIUrl":null,"url":null,"abstract":"<div><p>Long carbon fiber reinforced polyether ether ketone (LCFRPEEK) is fabricated using a three-dimensional (3D) needle-punched method in our previous work, which is considered as a potential orthopedic implant due to its high mechanical strength and isotropic properties, as well as having an elastic modulus similar to human cortical bone. However, the LCFRPEEK has inferior integration with bone tissue, limiting its clinical application. Thus, a facile surface modification method, using gelatin methacrylate/polyacrylamide composite hydrogel coating (GelMA/PAAM) loading with dexamethasone (Dex) on our newly-developed LCFRPEEK composite <em>via</em> concentrated sulfuric acid sulfonating and ultraviolet (UV) irradiation grafting methods, has been developed to tackle the problem. The results demonstrate that the GelMA/PAAM/Dex coating modified sulfonated LCFRPEEK (SCP/GP/Dex) has a hydrophilicity surface, a long-term Dex release capability and forms more bone-like apatite nodules in SBF. The SCP/GP/Dex also displays enhanced cytocompatibility and osteogenic differentiation in terms of rat bone marrow mesenchymal stem cells (rBMSCs) responses <em>in vitro</em> assay. The <em>in vivo</em> rat cranial defect assay confirms that SCP/GP/Dex boosts bone regeneration/osseointegration, which significantly improves osteogenic fixation between the implant and bone tissue. Therefore, the newly-developed LCFRPEEK modified <em>via</em> GelMA/PAAM/Dex bioactive coating exhibits improved biocompatibility and osteogenic integration capability, which has the basis for an orthopedic implant for clinical application.</p></div>","PeriodicalId":18212,"journal":{"name":"Materials science & engineering. C, Materials for biological applications","volume":"130 ","pages":"Article 112451"},"PeriodicalIF":8.1000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928493121005919/pdfft?md5=819ec54195c79748852f0fe8540fb5c3&pid=1-s2.0-S0928493121005919-main.pdf","citationCount":"6","resultStr":"{\"title\":\"The surface modification of long carbon fiber reinforced polyether ether ketone with bioactive composite hydrogel for effective osteogenicity\",\"authors\":\"Wenying Dong ,&nbsp;Wendi Ma ,&nbsp;Shanshan Zhao ,&nbsp;Yilong Wang ,&nbsp;Jihang Yao ,&nbsp;Zhewen Liu ,&nbsp;Zheng Chen ,&nbsp;Dahui Sun ,&nbsp;Zhenhua Jiang ,&nbsp;Mei Zhang\",\"doi\":\"10.1016/j.msec.2021.112451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Long carbon fiber reinforced polyether ether ketone (LCFRPEEK) is fabricated using a three-dimensional (3D) needle-punched method in our previous work, which is considered as a potential orthopedic implant due to its high mechanical strength and isotropic properties, as well as having an elastic modulus similar to human cortical bone. However, the LCFRPEEK has inferior integration with bone tissue, limiting its clinical application. Thus, a facile surface modification method, using gelatin methacrylate/polyacrylamide composite hydrogel coating (GelMA/PAAM) loading with dexamethasone (Dex) on our newly-developed LCFRPEEK composite <em>via</em> concentrated sulfuric acid sulfonating and ultraviolet (UV) irradiation grafting methods, has been developed to tackle the problem. The results demonstrate that the GelMA/PAAM/Dex coating modified sulfonated LCFRPEEK (SCP/GP/Dex) has a hydrophilicity surface, a long-term Dex release capability and forms more bone-like apatite nodules in SBF. The SCP/GP/Dex also displays enhanced cytocompatibility and osteogenic differentiation in terms of rat bone marrow mesenchymal stem cells (rBMSCs) responses <em>in vitro</em> assay. The <em>in vivo</em> rat cranial defect assay confirms that SCP/GP/Dex boosts bone regeneration/osseointegration, which significantly improves osteogenic fixation between the implant and bone tissue. Therefore, the newly-developed LCFRPEEK modified <em>via</em> GelMA/PAAM/Dex bioactive coating exhibits improved biocompatibility and osteogenic integration capability, which has the basis for an orthopedic implant for clinical application.</p></div>\",\"PeriodicalId\":18212,\"journal\":{\"name\":\"Materials science & engineering. C, Materials for biological applications\",\"volume\":\"130 \",\"pages\":\"Article 112451\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0928493121005919/pdfft?md5=819ec54195c79748852f0fe8540fb5c3&pid=1-s2.0-S0928493121005919-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials science & engineering. C, Materials for biological applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928493121005919\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials science & engineering. C, Materials for biological applications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928493121005919","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 6

摘要

长碳纤维增强聚醚醚酮(LCFRPEEK)在我们之前的工作中使用三维(3D)针刺方法制造,由于其高机械强度和各向同性特性,以及与人类皮质骨相似的弹性模量,被认为是一种潜在的骨科植入物。然而,LCFRPEEK与骨组织的结合较差,限制了其临床应用。因此,我们开发了一种简单的表面改性方法,将甲基丙烯酸明胶/聚丙烯酰胺复合水凝胶涂层(GelMA/PAAM)负载地塞米松(Dex),通过浓硫酸磺化和紫外线(UV)照射接枝的方法,在我们新开发的LCFRPEEK复合材料上进行表面改性。结果表明,GelMA/PAAM/Dex涂层修饰的磺化LCFRPEEK (SCP/GP/Dex)具有亲水性表面,具有长期释放Dex的能力,在SBF中形成更多骨样磷灰石小结。在体外实验中,SCP/GP/Dex在大鼠骨髓间充质干细胞(rBMSCs)应答方面也显示出增强的细胞相容性和成骨分化。体内大鼠颅骨缺损实验证实,SCP/GP/Dex促进骨再生/骨整合,显著改善种植体与骨组织之间的成骨固定。因此,新开发的经GelMA/PAAM/Dex生物活性涂层修饰的LCFRPEEK具有更好的生物相容性和成骨整合能力,为骨科植入物的临床应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The surface modification of long carbon fiber reinforced polyether ether ketone with bioactive composite hydrogel for effective osteogenicity

The surface modification of long carbon fiber reinforced polyether ether ketone with bioactive composite hydrogel for effective osteogenicity

Long carbon fiber reinforced polyether ether ketone (LCFRPEEK) is fabricated using a three-dimensional (3D) needle-punched method in our previous work, which is considered as a potential orthopedic implant due to its high mechanical strength and isotropic properties, as well as having an elastic modulus similar to human cortical bone. However, the LCFRPEEK has inferior integration with bone tissue, limiting its clinical application. Thus, a facile surface modification method, using gelatin methacrylate/polyacrylamide composite hydrogel coating (GelMA/PAAM) loading with dexamethasone (Dex) on our newly-developed LCFRPEEK composite via concentrated sulfuric acid sulfonating and ultraviolet (UV) irradiation grafting methods, has been developed to tackle the problem. The results demonstrate that the GelMA/PAAM/Dex coating modified sulfonated LCFRPEEK (SCP/GP/Dex) has a hydrophilicity surface, a long-term Dex release capability and forms more bone-like apatite nodules in SBF. The SCP/GP/Dex also displays enhanced cytocompatibility and osteogenic differentiation in terms of rat bone marrow mesenchymal stem cells (rBMSCs) responses in vitro assay. The in vivo rat cranial defect assay confirms that SCP/GP/Dex boosts bone regeneration/osseointegration, which significantly improves osteogenic fixation between the implant and bone tissue. Therefore, the newly-developed LCFRPEEK modified via GelMA/PAAM/Dex bioactive coating exhibits improved biocompatibility and osteogenic integration capability, which has the basis for an orthopedic implant for clinical application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
28
审稿时长
3.3 months
期刊介绍: Materials Today is a community committed to fostering the creation and sharing of knowledge and experience in materials science. With the support of Elsevier, this community publishes high-impact peer-reviewed journals, organizes academic conferences, and conducts educational webinars, among other initiatives. It serves as a hub for advancing materials science and facilitating collaboration within the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信