{"title":"\"增强 \"机械传感:内皮细胞对血流反应中的增强子和增强子衍生的长非编码 RNA。","authors":"Zhen Bouman Chen, Xuejing Liu, Aleysha T Chen","doi":"10.1016/bs.ctm.2021.08.002","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial cells (ECs), uniquely localized and strategically forming the inner lining of vascular wall, constitute the largest cell surface by area in the human body. The dynamic sensing and response of ECs to mechanical cues, especially shear stress, is crucial for maintenance of vascular homeostasis. It is well recognized that different flow patterns associated with atheroprotective vs atheroprone regions in the arterial tree, result in distinct EC functional phenotypes with differential transcriptome profiles. Mounting evidence has demonstrated an integrative and essential regulatory role of non-coding genome in EC biology. In particular, recent studies have begun to reveal the importance of enhancers and enhancer-derived transcripts in flow-regulated EC gene expression and function. In this minireview, we summarize studies in this area and discuss examples in support of the emerging importance of enhancers and enhancer(-derived) long non-coding RNAs (elncRNAs) in EC mechanosensing, with a focus on flow-responsive EC transcription. Finally, we will provide perspective and discuss standing questions to elucidate the role of these novel regulators in EC mechanobiology.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"Enhancing\\\" mechanosensing: Enhancers and enhancer-derived long non-coding RNAs in endothelial response to flow.\",\"authors\":\"Zhen Bouman Chen, Xuejing Liu, Aleysha T Chen\",\"doi\":\"10.1016/bs.ctm.2021.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endothelial cells (ECs), uniquely localized and strategically forming the inner lining of vascular wall, constitute the largest cell surface by area in the human body. The dynamic sensing and response of ECs to mechanical cues, especially shear stress, is crucial for maintenance of vascular homeostasis. It is well recognized that different flow patterns associated with atheroprotective vs atheroprone regions in the arterial tree, result in distinct EC functional phenotypes with differential transcriptome profiles. Mounting evidence has demonstrated an integrative and essential regulatory role of non-coding genome in EC biology. In particular, recent studies have begun to reveal the importance of enhancers and enhancer-derived transcripts in flow-regulated EC gene expression and function. In this minireview, we summarize studies in this area and discuss examples in support of the emerging importance of enhancers and enhancer(-derived) long non-coding RNAs (elncRNAs) in EC mechanosensing, with a focus on flow-responsive EC transcription. Finally, we will provide perspective and discuss standing questions to elucidate the role of these novel regulators in EC mechanobiology.</p>\",\"PeriodicalId\":11029,\"journal\":{\"name\":\"Current topics in membranes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in membranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ctm.2021.08.002\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in membranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctm.2021.08.002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
"Enhancing" mechanosensing: Enhancers and enhancer-derived long non-coding RNAs in endothelial response to flow.
Endothelial cells (ECs), uniquely localized and strategically forming the inner lining of vascular wall, constitute the largest cell surface by area in the human body. The dynamic sensing and response of ECs to mechanical cues, especially shear stress, is crucial for maintenance of vascular homeostasis. It is well recognized that different flow patterns associated with atheroprotective vs atheroprone regions in the arterial tree, result in distinct EC functional phenotypes with differential transcriptome profiles. Mounting evidence has demonstrated an integrative and essential regulatory role of non-coding genome in EC biology. In particular, recent studies have begun to reveal the importance of enhancers and enhancer-derived transcripts in flow-regulated EC gene expression and function. In this minireview, we summarize studies in this area and discuss examples in support of the emerging importance of enhancers and enhancer(-derived) long non-coding RNAs (elncRNAs) in EC mechanosensing, with a focus on flow-responsive EC transcription. Finally, we will provide perspective and discuss standing questions to elucidate the role of these novel regulators in EC mechanobiology.
期刊介绍:
Current Topics in Membranes provides a systematic, comprehensive, and rigorous approach to specific topics relevant to the study of cellular membranes. Each volume is a guest edited compendium of membrane biology.