Mohamed Eisa, Hamza Loucif, Julien van Grevenynghe, Angela Pearson
{"title":"犬疱疹病毒1型水痘病毒进入Madin-Darby犬肾上皮细胞是不依赖于ph值的,并通过类似巨噬细胞增多的机制发生,但不增加液体摄取","authors":"Mohamed Eisa, Hamza Loucif, Julien van Grevenynghe, Angela Pearson","doi":"10.1111/cmi.13398","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p><i>Canid herpesvirus</i> 1 (CHV-1) is a <i>Varicellovirus</i> that causes self-limiting infections in adult dogs but morbidity and mortality in puppies. Using a multipronged approach, we discovered the CHV-1 entry pathway into Madin–Darby canine kidney (MDCK) epithelial cells. We found that CHV-1 triggered extensive host cell membrane lamellipodial ruffling and rapid internalisation of virions in large, uncoated vacuoles, suggestive of macropinocytosis. Treatment with inhibitors targeting key macropinocytosis factors, including inhibitors of Na<sup>+</sup>/H<sup>+</sup> exchangers, F-actin, myosin light-chain kinase, protein kinase C, p21-activated kinase, phosphatidylinositol-3-kinase and focal adhesion kinase, significantly reduced viral replication. Moreover, the effect was restricted to exposure to the inhibitors early in infection, confirming a role for the macropinocytic machinery during entry. The profile of inhibitors also suggested a role for signalling via integrins and receptor tyrosine kinases in viral entry. In contrast, inhibitors of clathrin, caveolin, microtubules and endosomal acidification did not affect CHV-1 entry into MDCK cells. We found that the virus colocalised with the fluid-phase uptake marker dextran; however, surprisingly, CHV-1 infection did not enhance the uptake of dextran. Thus, our results indicate that CHV-1 uses a macropinocytosis-like, pH-independent entry pathway into MDCK cells, which nevertheless is not based on stimulation of fluid uptake.</p>\n </section>\n \n <section>\n \n <h3> Take Aways</h3>\n \n <div>\n <ul>\n \n <li>CHV-1 enters epithelial cells via a macropinocytosis-like mechanism.</li>\n \n <li>CHV-1 induces extensive lamellipodial ruffling.</li>\n \n <li>CHV-1 entry into MDCK cells is pH-independent.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Entry of the Varicellovirus Canid herpesvirus 1 into Madin–Darby canine kidney epithelial cells is pH-independent and occurs via a macropinocytosis-like mechanism but without increase in fluid uptake\",\"authors\":\"Mohamed Eisa, Hamza Loucif, Julien van Grevenynghe, Angela Pearson\",\"doi\":\"10.1111/cmi.13398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p><i>Canid herpesvirus</i> 1 (CHV-1) is a <i>Varicellovirus</i> that causes self-limiting infections in adult dogs but morbidity and mortality in puppies. Using a multipronged approach, we discovered the CHV-1 entry pathway into Madin–Darby canine kidney (MDCK) epithelial cells. We found that CHV-1 triggered extensive host cell membrane lamellipodial ruffling and rapid internalisation of virions in large, uncoated vacuoles, suggestive of macropinocytosis. Treatment with inhibitors targeting key macropinocytosis factors, including inhibitors of Na<sup>+</sup>/H<sup>+</sup> exchangers, F-actin, myosin light-chain kinase, protein kinase C, p21-activated kinase, phosphatidylinositol-3-kinase and focal adhesion kinase, significantly reduced viral replication. Moreover, the effect was restricted to exposure to the inhibitors early in infection, confirming a role for the macropinocytic machinery during entry. The profile of inhibitors also suggested a role for signalling via integrins and receptor tyrosine kinases in viral entry. In contrast, inhibitors of clathrin, caveolin, microtubules and endosomal acidification did not affect CHV-1 entry into MDCK cells. We found that the virus colocalised with the fluid-phase uptake marker dextran; however, surprisingly, CHV-1 infection did not enhance the uptake of dextran. Thus, our results indicate that CHV-1 uses a macropinocytosis-like, pH-independent entry pathway into MDCK cells, which nevertheless is not based on stimulation of fluid uptake.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Take Aways</h3>\\n \\n <div>\\n <ul>\\n \\n <li>CHV-1 enters epithelial cells via a macropinocytosis-like mechanism.</li>\\n \\n <li>CHV-1 induces extensive lamellipodial ruffling.</li>\\n \\n <li>CHV-1 entry into MDCK cells is pH-independent.</li>\\n </ul>\\n </div>\\n </section>\\n </div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cmi.13398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cmi.13398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Entry of the Varicellovirus Canid herpesvirus 1 into Madin–Darby canine kidney epithelial cells is pH-independent and occurs via a macropinocytosis-like mechanism but without increase in fluid uptake
Canid herpesvirus 1 (CHV-1) is a Varicellovirus that causes self-limiting infections in adult dogs but morbidity and mortality in puppies. Using a multipronged approach, we discovered the CHV-1 entry pathway into Madin–Darby canine kidney (MDCK) epithelial cells. We found that CHV-1 triggered extensive host cell membrane lamellipodial ruffling and rapid internalisation of virions in large, uncoated vacuoles, suggestive of macropinocytosis. Treatment with inhibitors targeting key macropinocytosis factors, including inhibitors of Na+/H+ exchangers, F-actin, myosin light-chain kinase, protein kinase C, p21-activated kinase, phosphatidylinositol-3-kinase and focal adhesion kinase, significantly reduced viral replication. Moreover, the effect was restricted to exposure to the inhibitors early in infection, confirming a role for the macropinocytic machinery during entry. The profile of inhibitors also suggested a role for signalling via integrins and receptor tyrosine kinases in viral entry. In contrast, inhibitors of clathrin, caveolin, microtubules and endosomal acidification did not affect CHV-1 entry into MDCK cells. We found that the virus colocalised with the fluid-phase uptake marker dextran; however, surprisingly, CHV-1 infection did not enhance the uptake of dextran. Thus, our results indicate that CHV-1 uses a macropinocytosis-like, pH-independent entry pathway into MDCK cells, which nevertheless is not based on stimulation of fluid uptake.
Take Aways
CHV-1 enters epithelial cells via a macropinocytosis-like mechanism.