{"title":"设计弗里德里希共济失调的II期临床试验。","authors":"Layne N Rodden, David R Lynch","doi":"10.1080/14728214.2021.1998452","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Friedreich ataxia (FRDA) is an autosomal recessive disorder caused by deficiency of frataxin, an essential mitochondrial protein involved in iron sulfur cluster biogenesis, oxidative phosphorylation and other processes. FRDA most notably affects the heart, sensory neurons, spinal cord, cerebellum, and other brain regions, and manifests clinically as ataxia, sensory loss, dysarthria, spasticity, and hypertrophic cardiomyopathy. Therapeutic approaches in FRDA have consisted of two different approaches: (1) augmenting or restoring frataxin production and (2) modulating a variety of downstream processes related to mitochondrial dysfunction, including reactive oxygen species production, ferroptosis, or Nrf2 activation.</p><p><strong>Areas covered: </strong>In this review, we summarize data from major phase II clinical trials in FRDA published between 2015 and 2020, which includes A0001/EPI743, Omaveloxolone, RT001, and Actimmune.</p><p><strong>Expert opinion: </strong>A growing number of drug candidates are being tested in phase II clinical trials for FRDA; however, most have not met their primary endpoints, and none have received FDA approval. In this review, we aim to summarize completed phase II clinical trials in FRDA, outlining critical lessons that have been learned and that should be incorporated into future trial design to ultimately optimize drug development in FRDA.</p>","PeriodicalId":12292,"journal":{"name":"Expert Opinion on Emerging Drugs","volume":"26 4","pages":"415-423"},"PeriodicalIF":2.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Designing phase II clinical trials in Friedreich ataxia.\",\"authors\":\"Layne N Rodden, David R Lynch\",\"doi\":\"10.1080/14728214.2021.1998452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Friedreich ataxia (FRDA) is an autosomal recessive disorder caused by deficiency of frataxin, an essential mitochondrial protein involved in iron sulfur cluster biogenesis, oxidative phosphorylation and other processes. FRDA most notably affects the heart, sensory neurons, spinal cord, cerebellum, and other brain regions, and manifests clinically as ataxia, sensory loss, dysarthria, spasticity, and hypertrophic cardiomyopathy. Therapeutic approaches in FRDA have consisted of two different approaches: (1) augmenting or restoring frataxin production and (2) modulating a variety of downstream processes related to mitochondrial dysfunction, including reactive oxygen species production, ferroptosis, or Nrf2 activation.</p><p><strong>Areas covered: </strong>In this review, we summarize data from major phase II clinical trials in FRDA published between 2015 and 2020, which includes A0001/EPI743, Omaveloxolone, RT001, and Actimmune.</p><p><strong>Expert opinion: </strong>A growing number of drug candidates are being tested in phase II clinical trials for FRDA; however, most have not met their primary endpoints, and none have received FDA approval. In this review, we aim to summarize completed phase II clinical trials in FRDA, outlining critical lessons that have been learned and that should be incorporated into future trial design to ultimately optimize drug development in FRDA.</p>\",\"PeriodicalId\":12292,\"journal\":{\"name\":\"Expert Opinion on Emerging Drugs\",\"volume\":\"26 4\",\"pages\":\"415-423\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Emerging Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14728214.2021.1998452\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Emerging Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14728214.2021.1998452","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Designing phase II clinical trials in Friedreich ataxia.
Introduction: Friedreich ataxia (FRDA) is an autosomal recessive disorder caused by deficiency of frataxin, an essential mitochondrial protein involved in iron sulfur cluster biogenesis, oxidative phosphorylation and other processes. FRDA most notably affects the heart, sensory neurons, spinal cord, cerebellum, and other brain regions, and manifests clinically as ataxia, sensory loss, dysarthria, spasticity, and hypertrophic cardiomyopathy. Therapeutic approaches in FRDA have consisted of two different approaches: (1) augmenting or restoring frataxin production and (2) modulating a variety of downstream processes related to mitochondrial dysfunction, including reactive oxygen species production, ferroptosis, or Nrf2 activation.
Areas covered: In this review, we summarize data from major phase II clinical trials in FRDA published between 2015 and 2020, which includes A0001/EPI743, Omaveloxolone, RT001, and Actimmune.
Expert opinion: A growing number of drug candidates are being tested in phase II clinical trials for FRDA; however, most have not met their primary endpoints, and none have received FDA approval. In this review, we aim to summarize completed phase II clinical trials in FRDA, outlining critical lessons that have been learned and that should be incorporated into future trial design to ultimately optimize drug development in FRDA.
期刊介绍:
Expert Opinion on Emerging Drugs (ISSN 1472-8214 [print], 1744-7623 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing structured reviews on Phase II and Phase III drugs/drug classes emerging onto the market across all therapy areas, providing expert opinion on their potential impact on the current management of specific diseases.