{"title":"ZrO2纳米颗粒在MC3T3-E1细胞中的代谢组学分析","authors":"Mingfu Ye, Linhu Wang, Zhang Wu, Wenjun Liu","doi":"10.1049/nbt2.12067","DOIUrl":null,"url":null,"abstract":"<p>The authors' previous study showed that zirconium oxide nanoparticles (ZrO<sub>2</sub> NPs) induce toxic effects in MC3T3-E1 cells; however, its toxicological mechanism is still unclear. Liquid chromatography–mass spectrometry/time-of-flight mass spectrometry was used to reveal the metabolite profile and toxicological mechanism of MC3T3-E1 cells in response to ZrO<sub>2</sub> NPs. The results demonstrated that MC3T3-E1 cells treated with ZrO<sub>2</sub> NPs for 24 and 48 h presented different metabolic characteristics. Following ZrO<sub>2</sub> NP treatment for 24 h, 96 upregulated and 129 downregulated metabolites in the positive ion mode, as well as 91 upregulated and 326 downregulated metabolites in the negative ion mode were identified. Following ZrO<sub>2</sub> NP treatment for 48 h, 33 upregulated and 174 downregulated metabolites were identified in the positive ion mode, whereas 37 upregulated and 302 downregulated metabolites were confirmed in the negative ion mode. Among them, 42 differential metabolites were recognised as potential metabolites contributing to the induced toxic effects of ZrO<sub>2</sub> NPs in MC3T3-E1 cells. Most of the differential metabolites were lysophosphatidylcholine and lysophosphatidylethanolamide, indicating that exposure to ZrO<sub>2</sub> NPs may have a profound impact on human cellular function by impairing the membrane system. The results also provide new clues for the toxicological mechanism of ZrO<sub>2</sub> NP dental materials.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"15 9","pages":"687-697"},"PeriodicalIF":3.8000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c9/21/NBT2-15-687.PMC8806115.pdf","citationCount":"0","resultStr":"{\"title\":\"Metabolomic profiling of ZrO2 nanoparticles in MC3T3-E1 cells\",\"authors\":\"Mingfu Ye, Linhu Wang, Zhang Wu, Wenjun Liu\",\"doi\":\"10.1049/nbt2.12067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The authors' previous study showed that zirconium oxide nanoparticles (ZrO<sub>2</sub> NPs) induce toxic effects in MC3T3-E1 cells; however, its toxicological mechanism is still unclear. Liquid chromatography–mass spectrometry/time-of-flight mass spectrometry was used to reveal the metabolite profile and toxicological mechanism of MC3T3-E1 cells in response to ZrO<sub>2</sub> NPs. The results demonstrated that MC3T3-E1 cells treated with ZrO<sub>2</sub> NPs for 24 and 48 h presented different metabolic characteristics. Following ZrO<sub>2</sub> NP treatment for 24 h, 96 upregulated and 129 downregulated metabolites in the positive ion mode, as well as 91 upregulated and 326 downregulated metabolites in the negative ion mode were identified. Following ZrO<sub>2</sub> NP treatment for 48 h, 33 upregulated and 174 downregulated metabolites were identified in the positive ion mode, whereas 37 upregulated and 302 downregulated metabolites were confirmed in the negative ion mode. Among them, 42 differential metabolites were recognised as potential metabolites contributing to the induced toxic effects of ZrO<sub>2</sub> NPs in MC3T3-E1 cells. Most of the differential metabolites were lysophosphatidylcholine and lysophosphatidylethanolamide, indicating that exposure to ZrO<sub>2</sub> NPs may have a profound impact on human cellular function by impairing the membrane system. The results also provide new clues for the toxicological mechanism of ZrO<sub>2</sub> NP dental materials.</p>\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":\"15 9\",\"pages\":\"687-697\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2021-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c9/21/NBT2-15-687.PMC8806115.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12067\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12067","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Metabolomic profiling of ZrO2 nanoparticles in MC3T3-E1 cells
The authors' previous study showed that zirconium oxide nanoparticles (ZrO2 NPs) induce toxic effects in MC3T3-E1 cells; however, its toxicological mechanism is still unclear. Liquid chromatography–mass spectrometry/time-of-flight mass spectrometry was used to reveal the metabolite profile and toxicological mechanism of MC3T3-E1 cells in response to ZrO2 NPs. The results demonstrated that MC3T3-E1 cells treated with ZrO2 NPs for 24 and 48 h presented different metabolic characteristics. Following ZrO2 NP treatment for 24 h, 96 upregulated and 129 downregulated metabolites in the positive ion mode, as well as 91 upregulated and 326 downregulated metabolites in the negative ion mode were identified. Following ZrO2 NP treatment for 48 h, 33 upregulated and 174 downregulated metabolites were identified in the positive ion mode, whereas 37 upregulated and 302 downregulated metabolites were confirmed in the negative ion mode. Among them, 42 differential metabolites were recognised as potential metabolites contributing to the induced toxic effects of ZrO2 NPs in MC3T3-E1 cells. Most of the differential metabolites were lysophosphatidylcholine and lysophosphatidylethanolamide, indicating that exposure to ZrO2 NPs may have a profound impact on human cellular function by impairing the membrane system. The results also provide new clues for the toxicological mechanism of ZrO2 NP dental materials.
期刊介绍:
Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level.
Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries.
IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to:
Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques)
Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology
Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools)
Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles)
Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance
Techniques for probing cell physiology, cell adhesion sites and cell-cell communication
Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology
Societal issues such as health and the environment
Special issues. Call for papers:
Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf
Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf