Reza Mombeiny, Shima Tavakol, Mostafa Kazemi, Mehdi Mehdizadeh, Akbar Hasanzadeh, Mohammad Karimi Babaahmadi, Ali Abedi, Peyman Keyhanvar
{"title":"抗炎溶酶体纳米制剂联合离子导入治疗慢性伤口愈合:一项体外研究","authors":"Reza Mombeiny, Shima Tavakol, Mostafa Kazemi, Mehdi Mehdizadeh, Akbar Hasanzadeh, Mohammad Karimi Babaahmadi, Ali Abedi, Peyman Keyhanvar","doi":"10.1049/nbt2.12069","DOIUrl":null,"url":null,"abstract":"<p>Prescription of anti-inflammatory drugs may be considered as a promising strategy in chronic wound healing where the inflammatory disturbance has delayed the healing process. It seems that hydrocortisone 17-butyrate (HB17) would be promising in the form of a nano-formulation to enhance drug delivery efficacy. In the present study, transdermal delivery of nano-HB17 in combination with iontophoresis was investigated ex vivo. Ethosomal-HB17 was synthesised using lecithin, ethanol and cholesterol with a different ratio by hot method. The negative ethosomal-HB17 particle size was around 244 ± 4.3 nm with high stability of up to 30 days. Additionally, evaluated entrapment efficiency of HB17 in ethosomes by high performance liquid chromatography was 40.6 ± 2.21%. Moreover, the permeation speed and amount of H17B in complete-thickness rat skin in the presence and absence of iontophoresis showed that the penetration of free H17B and ethosomal-H17B formulations were zero and 7.98 μg/cm<sup>2</sup> in 120 min, respectively. Whereas in the case of applying iontophoresis, permeation amount obtained was zero and 19.69 μg/cm<sup>2</sup> in 30 min in free H17B and ethosomal-H17B formulations, respectively. It has been concluded that transdermal delivery of ethosomal-H17B is an effective strategy to enhance drug delivery and it will be improved when it is combined with iontophoresis.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806119/pdf/","citationCount":"7","resultStr":"{\"title\":\"Anti-inflammatory ethosomal nanoformulation in combination with iontophoresis in chronic wound healing: An ex vivo study\",\"authors\":\"Reza Mombeiny, Shima Tavakol, Mostafa Kazemi, Mehdi Mehdizadeh, Akbar Hasanzadeh, Mohammad Karimi Babaahmadi, Ali Abedi, Peyman Keyhanvar\",\"doi\":\"10.1049/nbt2.12069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Prescription of anti-inflammatory drugs may be considered as a promising strategy in chronic wound healing where the inflammatory disturbance has delayed the healing process. It seems that hydrocortisone 17-butyrate (HB17) would be promising in the form of a nano-formulation to enhance drug delivery efficacy. In the present study, transdermal delivery of nano-HB17 in combination with iontophoresis was investigated ex vivo. Ethosomal-HB17 was synthesised using lecithin, ethanol and cholesterol with a different ratio by hot method. The negative ethosomal-HB17 particle size was around 244 ± 4.3 nm with high stability of up to 30 days. Additionally, evaluated entrapment efficiency of HB17 in ethosomes by high performance liquid chromatography was 40.6 ± 2.21%. Moreover, the permeation speed and amount of H17B in complete-thickness rat skin in the presence and absence of iontophoresis showed that the penetration of free H17B and ethosomal-H17B formulations were zero and 7.98 μg/cm<sup>2</sup> in 120 min, respectively. Whereas in the case of applying iontophoresis, permeation amount obtained was zero and 19.69 μg/cm<sup>2</sup> in 30 min in free H17B and ethosomal-H17B formulations, respectively. It has been concluded that transdermal delivery of ethosomal-H17B is an effective strategy to enhance drug delivery and it will be improved when it is combined with iontophoresis.</p>\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806119/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12069\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12069","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Anti-inflammatory ethosomal nanoformulation in combination with iontophoresis in chronic wound healing: An ex vivo study
Prescription of anti-inflammatory drugs may be considered as a promising strategy in chronic wound healing where the inflammatory disturbance has delayed the healing process. It seems that hydrocortisone 17-butyrate (HB17) would be promising in the form of a nano-formulation to enhance drug delivery efficacy. In the present study, transdermal delivery of nano-HB17 in combination with iontophoresis was investigated ex vivo. Ethosomal-HB17 was synthesised using lecithin, ethanol and cholesterol with a different ratio by hot method. The negative ethosomal-HB17 particle size was around 244 ± 4.3 nm with high stability of up to 30 days. Additionally, evaluated entrapment efficiency of HB17 in ethosomes by high performance liquid chromatography was 40.6 ± 2.21%. Moreover, the permeation speed and amount of H17B in complete-thickness rat skin in the presence and absence of iontophoresis showed that the penetration of free H17B and ethosomal-H17B formulations were zero and 7.98 μg/cm2 in 120 min, respectively. Whereas in the case of applying iontophoresis, permeation amount obtained was zero and 19.69 μg/cm2 in 30 min in free H17B and ethosomal-H17B formulations, respectively. It has been concluded that transdermal delivery of ethosomal-H17B is an effective strategy to enhance drug delivery and it will be improved when it is combined with iontophoresis.
期刊介绍:
Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level.
Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries.
IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to:
Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques)
Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology
Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools)
Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles)
Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance
Techniques for probing cell physiology, cell adhesion sites and cell-cell communication
Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology
Societal issues such as health and the environment
Special issues. Call for papers:
Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf
Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf