抗炎溶酶体纳米制剂联合离子导入治疗慢性伤口愈合:一项体外研究

IF 3.8 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Reza Mombeiny, Shima Tavakol, Mostafa Kazemi, Mehdi Mehdizadeh, Akbar Hasanzadeh, Mohammad Karimi Babaahmadi, Ali Abedi, Peyman Keyhanvar
{"title":"抗炎溶酶体纳米制剂联合离子导入治疗慢性伤口愈合:一项体外研究","authors":"Reza Mombeiny,&nbsp;Shima Tavakol,&nbsp;Mostafa Kazemi,&nbsp;Mehdi Mehdizadeh,&nbsp;Akbar Hasanzadeh,&nbsp;Mohammad Karimi Babaahmadi,&nbsp;Ali Abedi,&nbsp;Peyman Keyhanvar","doi":"10.1049/nbt2.12069","DOIUrl":null,"url":null,"abstract":"<p>Prescription of anti-inflammatory drugs may be considered as a promising strategy in chronic wound healing where the inflammatory disturbance has delayed the healing process. It seems that hydrocortisone 17-butyrate (HB17) would be promising in the form of a nano-formulation to enhance drug delivery efficacy. In the present study, transdermal delivery of nano-HB17 in combination with iontophoresis was investigated ex vivo. Ethosomal-HB17 was synthesised using lecithin, ethanol and cholesterol with a different ratio by hot method. The negative ethosomal-HB17 particle size was around 244 ± 4.3 nm with high stability of up to 30 days. Additionally, evaluated entrapment efficiency of HB17 in ethosomes by high performance liquid chromatography was 40.6 ± 2.21%. Moreover, the permeation speed and amount of H17B in complete-thickness rat skin in the presence and absence of iontophoresis showed that the penetration of free H17B and ethosomal-H17B formulations were zero and 7.98 μg/cm<sup>2</sup> in 120 min, respectively. Whereas in the case of applying iontophoresis, permeation amount obtained was zero and 19.69 μg/cm<sup>2</sup> in 30 min in free H17B and ethosomal-H17B formulations, respectively. It has been concluded that transdermal delivery of ethosomal-H17B is an effective strategy to enhance drug delivery and it will be improved when it is combined with iontophoresis.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"15 9","pages":"710-718"},"PeriodicalIF":3.8000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806119/pdf/","citationCount":"7","resultStr":"{\"title\":\"Anti-inflammatory ethosomal nanoformulation in combination with iontophoresis in chronic wound healing: An ex vivo study\",\"authors\":\"Reza Mombeiny,&nbsp;Shima Tavakol,&nbsp;Mostafa Kazemi,&nbsp;Mehdi Mehdizadeh,&nbsp;Akbar Hasanzadeh,&nbsp;Mohammad Karimi Babaahmadi,&nbsp;Ali Abedi,&nbsp;Peyman Keyhanvar\",\"doi\":\"10.1049/nbt2.12069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Prescription of anti-inflammatory drugs may be considered as a promising strategy in chronic wound healing where the inflammatory disturbance has delayed the healing process. It seems that hydrocortisone 17-butyrate (HB17) would be promising in the form of a nano-formulation to enhance drug delivery efficacy. In the present study, transdermal delivery of nano-HB17 in combination with iontophoresis was investigated ex vivo. Ethosomal-HB17 was synthesised using lecithin, ethanol and cholesterol with a different ratio by hot method. The negative ethosomal-HB17 particle size was around 244 ± 4.3 nm with high stability of up to 30 days. Additionally, evaluated entrapment efficiency of HB17 in ethosomes by high performance liquid chromatography was 40.6 ± 2.21%. Moreover, the permeation speed and amount of H17B in complete-thickness rat skin in the presence and absence of iontophoresis showed that the penetration of free H17B and ethosomal-H17B formulations were zero and 7.98 μg/cm<sup>2</sup> in 120 min, respectively. Whereas in the case of applying iontophoresis, permeation amount obtained was zero and 19.69 μg/cm<sup>2</sup> in 30 min in free H17B and ethosomal-H17B formulations, respectively. It has been concluded that transdermal delivery of ethosomal-H17B is an effective strategy to enhance drug delivery and it will be improved when it is combined with iontophoresis.</p>\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":\"15 9\",\"pages\":\"710-718\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806119/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12069\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12069","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 7

摘要

抗炎药物的处方可能被认为是一种有前途的策略,在慢性伤口愈合炎症干扰延迟愈合过程。氢化可的松17-丁酸酯(HB17)有望以纳米形式提高给药效果。在本研究中,研究了纳米hb17联合离子导入的体外透皮给药。以卵磷脂、乙醇和胆固醇为原料,按不同比例热法制备乙醇体- hb17。阴性乙醇体- hb17的粒径约为244±4.3 nm,具有长达30天的高稳定性。高效液相色谱法测定HB17在酶质体中的包封率为40.6±2.21%。此外,在有和没有离子透入的情况下,H17B在全厚度大鼠皮肤中的渗透速度和量表明,游离H17B和乙氧体-H17B在120 min内的渗透量分别为0和7.98 μg/cm2。而离子透入时,游离H17B和乙氧体-H17B在30 min内的透入量分别为0和19.69 μg/cm2。结果表明,乙氧体- h17b经皮给药是一种有效的药物给药策略,与离子透入相结合可提高给药效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anti-inflammatory ethosomal nanoformulation in combination with iontophoresis in chronic wound healing: An ex vivo study

Anti-inflammatory ethosomal nanoformulation in combination with iontophoresis in chronic wound healing: An ex vivo study

Prescription of anti-inflammatory drugs may be considered as a promising strategy in chronic wound healing where the inflammatory disturbance has delayed the healing process. It seems that hydrocortisone 17-butyrate (HB17) would be promising in the form of a nano-formulation to enhance drug delivery efficacy. In the present study, transdermal delivery of nano-HB17 in combination with iontophoresis was investigated ex vivo. Ethosomal-HB17 was synthesised using lecithin, ethanol and cholesterol with a different ratio by hot method. The negative ethosomal-HB17 particle size was around 244 ± 4.3 nm with high stability of up to 30 days. Additionally, evaluated entrapment efficiency of HB17 in ethosomes by high performance liquid chromatography was 40.6 ± 2.21%. Moreover, the permeation speed and amount of H17B in complete-thickness rat skin in the presence and absence of iontophoresis showed that the penetration of free H17B and ethosomal-H17B formulations were zero and 7.98 μg/cm2 in 120 min, respectively. Whereas in the case of applying iontophoresis, permeation amount obtained was zero and 19.69 μg/cm2 in 30 min in free H17B and ethosomal-H17B formulations, respectively. It has been concluded that transdermal delivery of ethosomal-H17B is an effective strategy to enhance drug delivery and it will be improved when it is combined with iontophoresis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET nanobiotechnology
IET nanobiotechnology 工程技术-纳米科技
CiteScore
6.20
自引率
4.30%
发文量
34
审稿时长
1 months
期刊介绍: Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level. Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries. IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to: Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques) Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools) Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles) Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance Techniques for probing cell physiology, cell adhesion sites and cell-cell communication Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology Societal issues such as health and the environment Special issues. Call for papers: Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信