叶酸代谢改变1,3-丁二烯诱导的染色体损伤:来自中国和体外实验的配对研究结果

IF 2.7 4区 医学 Q2 GENETICS & HEREDITY
Menglong Xiang, Zhi Wang, Peng Zou, Xi Ling, Guowei Zhang, Ziyuan Zhou, Jia Cao, Lin Ao
{"title":"叶酸代谢改变1,3-丁二烯诱导的染色体损伤:来自中国和体外实验的配对研究结果","authors":"Menglong Xiang,&nbsp;Zhi Wang,&nbsp;Peng Zou,&nbsp;Xi Ling,&nbsp;Guowei Zhang,&nbsp;Ziyuan Zhou,&nbsp;Jia Cao,&nbsp;Lin Ao","doi":"10.1186/s41021-021-00217-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To explore the role of folate metabolism in 1,3-Butadiene (BD)'s genotoxicity, we conducted a match-up study in BD-exposed workers in China to analyze the associations between the polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and the chromosomal damage induced by BD exposure, and culture-based experiments in TK-6 cells to examine the global DNA methylation levels and chromosomal damage when exposed both to BD's genotoxic metabolite, 1,2:3,4-diepoxybutane (DEB), and MTHFR's direct catalytic product, 5-methyltetrahydrofolate (5-MTHF).</p><p><strong>Methods: </strong>Cytokinesis block micronucleus assay (CBMN) was used to examine the chromosomal damage induced by BD or DEB. Poisson regression models were produced to quantify the relationship of chromosomal damage and genetic polymorphisms in the BD-exposed workers. Global DNA methylation levels in TK6 cells were examined using DNA Methylation Quantification Kit.</p><p><strong>Results: </strong>We found that BD-exposed workers carrying MTHFR C677T CC (2.00 ± 2.00‰) (FR = 0.36, 95%CI: 0.20-0.67, P < 0.01) or MTHFR C677T CT (2.87 ± 1.98‰) (FR = 0.49, 95%CI: 0.32-0.77, P < 0.01) genotypes had significantly lower nuclear bud (NBUD) frequencies than those carrying genotype MTHFR 677 TT (5.33 ± 2.60‰), respectively. The results in TK6 cells showed that there was a significant increment in frequencies of micronucleus (MN), nucleoplasmic bridge (NPB) and nuclear bud (NBUD) with exposure to DEB at each 5-MTHF dose (ANOVA, P < 0.01). Additionally, there was a significant decrease in frequencies of MN, NPB and NBUD in DEB-exposed cultures with increasing concentration of 5-MTHF (ANOVA, P < 0.05). The levels of global DNA methylation were significantly decreased by DEB treatment in a dose-dependent manner within each 5-MTHF concentration in TK-6 cells (ANOVA, P < 0.01), and were significantly increased by 5-MTHF supplementation within each DEB concentration (ANOVA, P < 0.01).</p><p><strong>Conclusion: </strong>We reported that folate metabolism could modify the association between BD exposure and chromosomal damage, and such effect may be partially mediated by DNA hypomethylation, and 5-MTHF supplementation could rescue it.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":" ","pages":"44"},"PeriodicalIF":2.7000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501532/pdf/","citationCount":"1","resultStr":"{\"title\":\"Folate metabolism modifies chromosomal damage induced by 1,3-butadiene: results from a match-up study in China and in vitro experiments.\",\"authors\":\"Menglong Xiang,&nbsp;Zhi Wang,&nbsp;Peng Zou,&nbsp;Xi Ling,&nbsp;Guowei Zhang,&nbsp;Ziyuan Zhou,&nbsp;Jia Cao,&nbsp;Lin Ao\",\"doi\":\"10.1186/s41021-021-00217-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To explore the role of folate metabolism in 1,3-Butadiene (BD)'s genotoxicity, we conducted a match-up study in BD-exposed workers in China to analyze the associations between the polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and the chromosomal damage induced by BD exposure, and culture-based experiments in TK-6 cells to examine the global DNA methylation levels and chromosomal damage when exposed both to BD's genotoxic metabolite, 1,2:3,4-diepoxybutane (DEB), and MTHFR's direct catalytic product, 5-methyltetrahydrofolate (5-MTHF).</p><p><strong>Methods: </strong>Cytokinesis block micronucleus assay (CBMN) was used to examine the chromosomal damage induced by BD or DEB. Poisson regression models were produced to quantify the relationship of chromosomal damage and genetic polymorphisms in the BD-exposed workers. Global DNA methylation levels in TK6 cells were examined using DNA Methylation Quantification Kit.</p><p><strong>Results: </strong>We found that BD-exposed workers carrying MTHFR C677T CC (2.00 ± 2.00‰) (FR = 0.36, 95%CI: 0.20-0.67, P < 0.01) or MTHFR C677T CT (2.87 ± 1.98‰) (FR = 0.49, 95%CI: 0.32-0.77, P < 0.01) genotypes had significantly lower nuclear bud (NBUD) frequencies than those carrying genotype MTHFR 677 TT (5.33 ± 2.60‰), respectively. The results in TK6 cells showed that there was a significant increment in frequencies of micronucleus (MN), nucleoplasmic bridge (NPB) and nuclear bud (NBUD) with exposure to DEB at each 5-MTHF dose (ANOVA, P < 0.01). Additionally, there was a significant decrease in frequencies of MN, NPB and NBUD in DEB-exposed cultures with increasing concentration of 5-MTHF (ANOVA, P < 0.05). The levels of global DNA methylation were significantly decreased by DEB treatment in a dose-dependent manner within each 5-MTHF concentration in TK-6 cells (ANOVA, P < 0.01), and were significantly increased by 5-MTHF supplementation within each DEB concentration (ANOVA, P < 0.01).</p><p><strong>Conclusion: </strong>We reported that folate metabolism could modify the association between BD exposure and chromosomal damage, and such effect may be partially mediated by DNA hypomethylation, and 5-MTHF supplementation could rescue it.</p>\",\"PeriodicalId\":12709,\"journal\":{\"name\":\"Genes and Environment\",\"volume\":\" \",\"pages\":\"44\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501532/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes and Environment\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s41021-021-00217-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Environment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41021-021-00217-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1

摘要

目的:为了探讨叶酸代谢在1,3-丁二烯(BD)遗传毒性中的作用,我们对中国暴露于BD的工人进行了配对研究,分析亚甲基四氢叶酸还原酶(MTHFR)多态性与BD暴露诱导的染色体损伤之间的关系,并在TK-6细胞中进行了培养实验,以检测暴露于BD的遗传毒性代谢物1,2:3,4-二氧基丁烷(DEB)时的总体DNA甲基化水平和染色体损伤。以及MTHFR的直接催化产物5-甲基四氢叶酸(5-MTHF)。方法:采用细胞分裂阻断微核试验(Cytokinesis block micronuclear assay, CBMN)检测BD或DEB所致的染色体损伤。建立泊松回归模型,量化暴露于bd的工人染色体损伤与遗传多态性的关系。采用DNA甲基化定量试剂盒检测TK6细胞整体DNA甲基化水平。结果:我们发现BD暴露工人携带MTHFR C677T CC(2.00±2.00‰)(FR = 0.36, 95%CI: 0.20-0.67, P)。结论:我们报道叶酸代谢可以改变BD暴露与染色体损伤之间的关系,这种作用可能部分由DNA低甲基化介导,补充5-MTHF可以挽救这种关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Folate metabolism modifies chromosomal damage induced by 1,3-butadiene: results from a match-up study in China and in vitro experiments.

Folate metabolism modifies chromosomal damage induced by 1,3-butadiene: results from a match-up study in China and in vitro experiments.

Objectives: To explore the role of folate metabolism in 1,3-Butadiene (BD)'s genotoxicity, we conducted a match-up study in BD-exposed workers in China to analyze the associations between the polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and the chromosomal damage induced by BD exposure, and culture-based experiments in TK-6 cells to examine the global DNA methylation levels and chromosomal damage when exposed both to BD's genotoxic metabolite, 1,2:3,4-diepoxybutane (DEB), and MTHFR's direct catalytic product, 5-methyltetrahydrofolate (5-MTHF).

Methods: Cytokinesis block micronucleus assay (CBMN) was used to examine the chromosomal damage induced by BD or DEB. Poisson regression models were produced to quantify the relationship of chromosomal damage and genetic polymorphisms in the BD-exposed workers. Global DNA methylation levels in TK6 cells were examined using DNA Methylation Quantification Kit.

Results: We found that BD-exposed workers carrying MTHFR C677T CC (2.00 ± 2.00‰) (FR = 0.36, 95%CI: 0.20-0.67, P < 0.01) or MTHFR C677T CT (2.87 ± 1.98‰) (FR = 0.49, 95%CI: 0.32-0.77, P < 0.01) genotypes had significantly lower nuclear bud (NBUD) frequencies than those carrying genotype MTHFR 677 TT (5.33 ± 2.60‰), respectively. The results in TK6 cells showed that there was a significant increment in frequencies of micronucleus (MN), nucleoplasmic bridge (NPB) and nuclear bud (NBUD) with exposure to DEB at each 5-MTHF dose (ANOVA, P < 0.01). Additionally, there was a significant decrease in frequencies of MN, NPB and NBUD in DEB-exposed cultures with increasing concentration of 5-MTHF (ANOVA, P < 0.05). The levels of global DNA methylation were significantly decreased by DEB treatment in a dose-dependent manner within each 5-MTHF concentration in TK-6 cells (ANOVA, P < 0.01), and were significantly increased by 5-MTHF supplementation within each DEB concentration (ANOVA, P < 0.01).

Conclusion: We reported that folate metabolism could modify the association between BD exposure and chromosomal damage, and such effect may be partially mediated by DNA hypomethylation, and 5-MTHF supplementation could rescue it.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes and Environment
Genes and Environment Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
4.00
自引率
0.00%
发文量
24
审稿时长
27 weeks
期刊介绍: Genes and Environment is an open access, peer-reviewed journal that aims to accelerate communications among global scientists working in the field of genes and environment. The journal publishes articles across a broad range of topics including environmental mutagenesis and carcinogenesis, environmental genomics and epigenetics, molecular epidemiology, genetic toxicology and regulatory sciences. Topics published in the journal include, but are not limited to, mutagenesis and anti-mutagenesis in bacteria; genotoxicity in mammalian somatic cells; genotoxicity in germ cells; replication and repair; DNA damage; metabolic activation and inactivation; water and air pollution; ROS, NO and photoactivation; pharmaceuticals and anticancer agents; radiation; endocrine disrupters; indirect mutagenesis; threshold; new techniques for environmental mutagenesis studies; DNA methylation (enzymatic); structure activity relationship; chemoprevention of cancer; regulatory science. Genetic toxicology including risk evaluation for human health, validation studies on testing methods and subjects of guidelines for regulation of chemicals are also within its scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信