Randi E Gislefoss, Urszula Berge, Marianne Lauritzen, Hilde Langseth, Marcin W Wojewodzic
{"title":"测定生物库血清标本溶血的一种简单、经济的方法。","authors":"Randi E Gislefoss, Urszula Berge, Marianne Lauritzen, Hilde Langseth, Marcin W Wojewodzic","doi":"10.1089/bio.2021.0037","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> During sampling and processing, blood samples can be affected by hemolysis. Information is lacking regarding hemolysis for biobank samples. There is a need for a method that can easily measure hemoglobin as an indicator of hemolysis in stored samples before they are included in research projects. In this study we present a simple method for estimating hemolysis and investigate the effect of centrifugation speeds and temperatures on sample turbidity that commonly interferes with measurements. <b><i>Methods:</i></b> Using a variation of the Beer-Lambert law, we quantified the hemoglobin concentration in 75 long-term stored samples at a wavelength of 414 nm with a NanoDrop™ 8000 spectrophotometer. Owing to interference from turbidity, the samples underwent different treatments post-thawing: centrifugation at 10,000 and 20,000 <i>g</i> at two different temperatures (4°C and 19°C) for 15 minutes. In addition, freshly collected serum samples (<i>n</i> = 20) underwent a single freeze-thaw cycle, with hemoglobin measured prefreeze, post-thaw, and postcentrifugation. Kruskal-Wallis rank sum test groups and pairwise Wilcoxon rank test were used for statistical analysis. <b><i>Results:</i></b> A strong effect of centrifugation on the turbidity was shown for the long-term stored samples, however, this effect was independent of the temperature or centrifugation speeds. Centrifugation at 20,000 <i>g</i> for 15 minutes at 19°C reduced the turbidity up to 50%. A single freeze-thaw cycle in the fresh samples increased the optical density at 414 nm slightly, indicating a false increase of hemoglobin concentration. The following centrifugation reduced the concentration to less than the initial sample measurements, suggesting the presence of interference immediately after sampling. <b><i>Conclusion:</i></b> We describe here a simple and cost-effective NanoDrop-based method for measuring hemolysis levels intended for use in biobank facilities. We found that centrifugation, but not temperature, is a crucial step to reduce interference from turbidity.</p>","PeriodicalId":49231,"journal":{"name":"Biopreservation and Biobanking","volume":" ","pages":"525-530"},"PeriodicalIF":1.2000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Simple and Cost-Effective Method for Measuring Hemolysis in Biobank Serum Specimens.\",\"authors\":\"Randi E Gislefoss, Urszula Berge, Marianne Lauritzen, Hilde Langseth, Marcin W Wojewodzic\",\"doi\":\"10.1089/bio.2021.0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> During sampling and processing, blood samples can be affected by hemolysis. Information is lacking regarding hemolysis for biobank samples. There is a need for a method that can easily measure hemoglobin as an indicator of hemolysis in stored samples before they are included in research projects. In this study we present a simple method for estimating hemolysis and investigate the effect of centrifugation speeds and temperatures on sample turbidity that commonly interferes with measurements. <b><i>Methods:</i></b> Using a variation of the Beer-Lambert law, we quantified the hemoglobin concentration in 75 long-term stored samples at a wavelength of 414 nm with a NanoDrop™ 8000 spectrophotometer. Owing to interference from turbidity, the samples underwent different treatments post-thawing: centrifugation at 10,000 and 20,000 <i>g</i> at two different temperatures (4°C and 19°C) for 15 minutes. In addition, freshly collected serum samples (<i>n</i> = 20) underwent a single freeze-thaw cycle, with hemoglobin measured prefreeze, post-thaw, and postcentrifugation. Kruskal-Wallis rank sum test groups and pairwise Wilcoxon rank test were used for statistical analysis. <b><i>Results:</i></b> A strong effect of centrifugation on the turbidity was shown for the long-term stored samples, however, this effect was independent of the temperature or centrifugation speeds. Centrifugation at 20,000 <i>g</i> for 15 minutes at 19°C reduced the turbidity up to 50%. A single freeze-thaw cycle in the fresh samples increased the optical density at 414 nm slightly, indicating a false increase of hemoglobin concentration. The following centrifugation reduced the concentration to less than the initial sample measurements, suggesting the presence of interference immediately after sampling. <b><i>Conclusion:</i></b> We describe here a simple and cost-effective NanoDrop-based method for measuring hemolysis levels intended for use in biobank facilities. We found that centrifugation, but not temperature, is a crucial step to reduce interference from turbidity.</p>\",\"PeriodicalId\":49231,\"journal\":{\"name\":\"Biopreservation and Biobanking\",\"volume\":\" \",\"pages\":\"525-530\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopreservation and Biobanking\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/bio.2021.0037\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/10/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopreservation and Biobanking","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2021.0037","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A Simple and Cost-Effective Method for Measuring Hemolysis in Biobank Serum Specimens.
Background: During sampling and processing, blood samples can be affected by hemolysis. Information is lacking regarding hemolysis for biobank samples. There is a need for a method that can easily measure hemoglobin as an indicator of hemolysis in stored samples before they are included in research projects. In this study we present a simple method for estimating hemolysis and investigate the effect of centrifugation speeds and temperatures on sample turbidity that commonly interferes with measurements. Methods: Using a variation of the Beer-Lambert law, we quantified the hemoglobin concentration in 75 long-term stored samples at a wavelength of 414 nm with a NanoDrop™ 8000 spectrophotometer. Owing to interference from turbidity, the samples underwent different treatments post-thawing: centrifugation at 10,000 and 20,000 g at two different temperatures (4°C and 19°C) for 15 minutes. In addition, freshly collected serum samples (n = 20) underwent a single freeze-thaw cycle, with hemoglobin measured prefreeze, post-thaw, and postcentrifugation. Kruskal-Wallis rank sum test groups and pairwise Wilcoxon rank test were used for statistical analysis. Results: A strong effect of centrifugation on the turbidity was shown for the long-term stored samples, however, this effect was independent of the temperature or centrifugation speeds. Centrifugation at 20,000 g for 15 minutes at 19°C reduced the turbidity up to 50%. A single freeze-thaw cycle in the fresh samples increased the optical density at 414 nm slightly, indicating a false increase of hemoglobin concentration. The following centrifugation reduced the concentration to less than the initial sample measurements, suggesting the presence of interference immediately after sampling. Conclusion: We describe here a simple and cost-effective NanoDrop-based method for measuring hemolysis levels intended for use in biobank facilities. We found that centrifugation, but not temperature, is a crucial step to reduce interference from turbidity.
期刊介绍:
Biopreservation and Biobanking is the first journal to provide a unifying forum for the peer-reviewed communication of recent advances in the emerging and evolving field of biospecimen procurement, processing, preservation and banking, distribution, and use. The Journal publishes a range of original articles focusing on current challenges and problems in biopreservation, and advances in methods to address these issues related to the processing of macromolecules, cells, and tissues for research.
In a new section dedicated to Emerging Markets and Technologies, the Journal highlights the emergence of new markets and technologies that are either adopting or disrupting the biobank framework as they imprint on society. The solutions presented here are anticipated to help drive innovation within the biobank community.
Biopreservation and Biobanking also explores the ethical, legal, and societal considerations surrounding biobanking and biorepository operation. Ideas and practical solutions relevant to improved quality, efficiency, and sustainability of repositories, and relating to their management, operation and oversight are discussed as well.