高氯酸盐污染:来源、影响和修复技术。

IF 6.1 3区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Rosa Acevedo-Barrios, Jesus Olivero-Verbel
{"title":"高氯酸盐污染:来源、影响和修复技术。","authors":"Rosa Acevedo-Barrios,&nbsp;Jesus Olivero-Verbel","doi":"10.1007/398_2021_66","DOIUrl":null,"url":null,"abstract":"<p><p>Perchlorate is a persistent pollutant, generated via natural and anthropogenic processes, that possesses a high potential for endocrine disruption in humans and biota. It inhibits iodine fixation, a major reason for eliminating this pollutant from ecosystems. Remediation of perchlorate can be achieved with various physicochemical treatments, especially at low concentrations. However, microbiological approaches using microorganisms, such as those from the genera Dechloromonas, Serratia, Propionivibrio, Wolinella, and Azospirillum, are promising when perchlorate pollution is extensive. Perchlorate-reducing bacteria, isolated from harsh environments, for example saline soils, mine sediments, thermal waters, wastewater treatment plants, underground gas storage facilities, and remote areas, including the Antarctica, can provide removal yields from 20 to 100%. Perchlorate reduction, carried out by a series of enzymes, such as perchlorate reductase and superoxide chlorite, depends on pH, temperature, salt concentration, metabolic inhibitors, nutritional conditions, time of contact, and cellular concentration. Microbial degradation is cost-effective, simple to implement, and environmentally friendly, rendering it a viable method for alleviating perchlorate pollution in the environment.</p>","PeriodicalId":21182,"journal":{"name":"Reviews of environmental contamination and toxicology","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Perchlorate Contamination: Sources, Effects, and Technologies for Remediation.\",\"authors\":\"Rosa Acevedo-Barrios,&nbsp;Jesus Olivero-Verbel\",\"doi\":\"10.1007/398_2021_66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Perchlorate is a persistent pollutant, generated via natural and anthropogenic processes, that possesses a high potential for endocrine disruption in humans and biota. It inhibits iodine fixation, a major reason for eliminating this pollutant from ecosystems. Remediation of perchlorate can be achieved with various physicochemical treatments, especially at low concentrations. However, microbiological approaches using microorganisms, such as those from the genera Dechloromonas, Serratia, Propionivibrio, Wolinella, and Azospirillum, are promising when perchlorate pollution is extensive. Perchlorate-reducing bacteria, isolated from harsh environments, for example saline soils, mine sediments, thermal waters, wastewater treatment plants, underground gas storage facilities, and remote areas, including the Antarctica, can provide removal yields from 20 to 100%. Perchlorate reduction, carried out by a series of enzymes, such as perchlorate reductase and superoxide chlorite, depends on pH, temperature, salt concentration, metabolic inhibitors, nutritional conditions, time of contact, and cellular concentration. Microbial degradation is cost-effective, simple to implement, and environmentally friendly, rendering it a viable method for alleviating perchlorate pollution in the environment.</p>\",\"PeriodicalId\":21182,\"journal\":{\"name\":\"Reviews of environmental contamination and toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of environmental contamination and toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/398_2021_66\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of environmental contamination and toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/398_2021_66","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 7

摘要

高氯酸盐是一种持久性污染物,通过自然和人为过程产生,对人类和生物群的内分泌干扰具有很高的潜力。它抑制了碘的固定,这是从生态系统中消除这种污染物的主要原因。高氯酸盐的修复可以通过各种物理化学处理来实现,特别是在低浓度下。然而,在高氯酸盐污染广泛的情况下,利用微生物,如脱氯单胞菌属、沙雷氏菌属、丙酸弧菌属、Wolinella菌属和偶氮螺旋菌属的微生物学方法是很有前途的。从恶劣环境中分离出来的高氯酸盐还原细菌,例如盐碱地、矿山沉积物、热水、废水处理厂、地下储气设施和包括南极洲在内的偏远地区,可以提供20%至100%的去除率。高氯酸盐还原由一系列酶,如高氯酸盐还原酶和超氧化物亚氯酸盐进行,取决于pH值、温度、盐浓度、代谢抑制剂、营养条件、接触时间和细胞浓度。微生物降解具有成本效益高、实施简单、环境友好的特点,是缓解环境中高氯酸盐污染的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perchlorate Contamination: Sources, Effects, and Technologies for Remediation.

Perchlorate is a persistent pollutant, generated via natural and anthropogenic processes, that possesses a high potential for endocrine disruption in humans and biota. It inhibits iodine fixation, a major reason for eliminating this pollutant from ecosystems. Remediation of perchlorate can be achieved with various physicochemical treatments, especially at low concentrations. However, microbiological approaches using microorganisms, such as those from the genera Dechloromonas, Serratia, Propionivibrio, Wolinella, and Azospirillum, are promising when perchlorate pollution is extensive. Perchlorate-reducing bacteria, isolated from harsh environments, for example saline soils, mine sediments, thermal waters, wastewater treatment plants, underground gas storage facilities, and remote areas, including the Antarctica, can provide removal yields from 20 to 100%. Perchlorate reduction, carried out by a series of enzymes, such as perchlorate reductase and superoxide chlorite, depends on pH, temperature, salt concentration, metabolic inhibitors, nutritional conditions, time of contact, and cellular concentration. Microbial degradation is cost-effective, simple to implement, and environmentally friendly, rendering it a viable method for alleviating perchlorate pollution in the environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.80
自引率
0.00%
发文量
11
审稿时长
>24 weeks
期刊介绍: Reviews of Environmental Contamination and Toxicology publishes reviews pertaining to the sources, transport, fate and effects of contaminants in the environment. The journal provides a place for the publication of critical reviews of the current knowledge and understanding of environmental sciences in order to provide insight into contaminant pathways, fate and behavior in environmental compartments and the possible consequences of their presence, with multidisciplinary contributions from the fields of analytical chemistry, biochemistry, biology, ecology, molecular and cellular biology (in an environmental context), and human, wildlife and environmental toxicology. •Standing on a 55+ year history of publishing environmental toxicology reviews •Now publishing in journal format boasting rigorous review and expanded editorial board •Publishing home for extensive environmental reviews dealing with sources, transport, fate and effect of contaminants •Through Springer Compact agreements, authors from participating institutions can publish Open Choice at no cost to the authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信