{"title":"具有非线性相互作用的多变量面板计数数据的半参数分析。","authors":"Weiwei Wang, Yijun Wang, Xiaobing Zhao","doi":"10.1007/s10985-021-09537-1","DOIUrl":null,"url":null,"abstract":"<p><p>Multivariate panel count data frequently arise in follow up studies involving several related types of recurrent events. For univariate panel count data, several varying coefficient models have been developed. However, varying coefficient models for multivariate panel count data remain to be studied. In this paper, we propose a varying coefficient mean model for multivariate panel count data to describe the possible nonlinear interact effects between the covariates and the local logarithm partial likelihood procedure is considered to estimate the unknown covariate effects. Furthermore, a Breslow-type estimator is constructed for the baseline mean functions. The consistency and asymptotic normality of the proposed estimators are established under some mild conditions. The utility of the proposed approach is evaluated by some numerical simulations and an application to a dataset of skin cancer study.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"28 1","pages":"89-115"},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semiparametric analysis of multivariate panel count data with nonlinear interactions.\",\"authors\":\"Weiwei Wang, Yijun Wang, Xiaobing Zhao\",\"doi\":\"10.1007/s10985-021-09537-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multivariate panel count data frequently arise in follow up studies involving several related types of recurrent events. For univariate panel count data, several varying coefficient models have been developed. However, varying coefficient models for multivariate panel count data remain to be studied. In this paper, we propose a varying coefficient mean model for multivariate panel count data to describe the possible nonlinear interact effects between the covariates and the local logarithm partial likelihood procedure is considered to estimate the unknown covariate effects. Furthermore, a Breslow-type estimator is constructed for the baseline mean functions. The consistency and asymptotic normality of the proposed estimators are established under some mild conditions. The utility of the proposed approach is evaluated by some numerical simulations and an application to a dataset of skin cancer study.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":\"28 1\",\"pages\":\"89-115\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-021-09537-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/10/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-021-09537-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Semiparametric analysis of multivariate panel count data with nonlinear interactions.
Multivariate panel count data frequently arise in follow up studies involving several related types of recurrent events. For univariate panel count data, several varying coefficient models have been developed. However, varying coefficient models for multivariate panel count data remain to be studied. In this paper, we propose a varying coefficient mean model for multivariate panel count data to describe the possible nonlinear interact effects between the covariates and the local logarithm partial likelihood procedure is considered to estimate the unknown covariate effects. Furthermore, a Breslow-type estimator is constructed for the baseline mean functions. The consistency and asymptotic normality of the proposed estimators are established under some mild conditions. The utility of the proposed approach is evaluated by some numerical simulations and an application to a dataset of skin cancer study.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.