核医学中的人工智能——什么,为什么和如何?

IF 1 4区 医学 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Nuklearmedizin-nuclear Medicine Pub Date : 2021-10-01 Epub Date: 2021-10-04 DOI:10.1055/a-1542-6231
Julian Manuel Michael Rogasch, Tobias Penzkofer
{"title":"核医学中的人工智能——什么,为什么和如何?","authors":"Julian Manuel Michael Rogasch, Tobias Penzkofer","doi":"10.1055/a-1542-6231","DOIUrl":null,"url":null,"abstract":"There have been various attempts to define artificial intelligence (AI), and none is sufficiently precise but at the same time universally applicable. However, in the context of medical imaging, the term machine learning (ML), which is generally considered a subset of AI [1], may describe most applications more appropriately. Here, “learning” relates to the capability of systems to identify complex relationships between data and to predict outcomes in new and unknown data with similar characteristics. With the computing power available today, ML has advanced from classical ML methods, such as decision trees or support vector machines, to more complex architectures, such as deep learning. This uses “deep” artificial neural networks, which are characterized by multiple layers of artificial neurons [2]. In several applications in medical imaging, deep learning has been found to be equivalent or superior to classical ML methods [3, 4, 5], and it is now the most commonly used ML approach for such tasks. Deep neural networks, and especially convolutional neural networks (yet another subset), are inherently useful for the numerous “visual tasks” involved in image analysis.","PeriodicalId":19238,"journal":{"name":"Nuklearmedizin-nuclear Medicine","volume":"60 5","pages":"321-324"},"PeriodicalIF":1.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI in nuclear medicine - what, why and how?\",\"authors\":\"Julian Manuel Michael Rogasch, Tobias Penzkofer\",\"doi\":\"10.1055/a-1542-6231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There have been various attempts to define artificial intelligence (AI), and none is sufficiently precise but at the same time universally applicable. However, in the context of medical imaging, the term machine learning (ML), which is generally considered a subset of AI [1], may describe most applications more appropriately. Here, “learning” relates to the capability of systems to identify complex relationships between data and to predict outcomes in new and unknown data with similar characteristics. With the computing power available today, ML has advanced from classical ML methods, such as decision trees or support vector machines, to more complex architectures, such as deep learning. This uses “deep” artificial neural networks, which are characterized by multiple layers of artificial neurons [2]. In several applications in medical imaging, deep learning has been found to be equivalent or superior to classical ML methods [3, 4, 5], and it is now the most commonly used ML approach for such tasks. Deep neural networks, and especially convolutional neural networks (yet another subset), are inherently useful for the numerous “visual tasks” involved in image analysis.\",\"PeriodicalId\":19238,\"journal\":{\"name\":\"Nuklearmedizin-nuclear Medicine\",\"volume\":\"60 5\",\"pages\":\"321-324\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuklearmedizin-nuclear Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-1542-6231\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/10/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuklearmedizin-nuclear Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-1542-6231","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI in nuclear medicine - what, why and how?
There have been various attempts to define artificial intelligence (AI), and none is sufficiently precise but at the same time universally applicable. However, in the context of medical imaging, the term machine learning (ML), which is generally considered a subset of AI [1], may describe most applications more appropriately. Here, “learning” relates to the capability of systems to identify complex relationships between data and to predict outcomes in new and unknown data with similar characteristics. With the computing power available today, ML has advanced from classical ML methods, such as decision trees or support vector machines, to more complex architectures, such as deep learning. This uses “deep” artificial neural networks, which are characterized by multiple layers of artificial neurons [2]. In several applications in medical imaging, deep learning has been found to be equivalent or superior to classical ML methods [3, 4, 5], and it is now the most commonly used ML approach for such tasks. Deep neural networks, and especially convolutional neural networks (yet another subset), are inherently useful for the numerous “visual tasks” involved in image analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
13.30%
发文量
267
审稿时长
>12 weeks
期刊介绍: Als Standes- und Fachorgan (Organ von Deutscher Gesellschaft für Nuklearmedizin (DGN), Österreichischer Gesellschaft für Nuklearmedizin und Molekulare Bildgebung (ÖGN), Schweizerischer Gesellschaft für Nuklearmedizin (SGNM, SSNM)) von hohem wissenschaftlichen Anspruch befasst sich die CME-zertifizierte Nuklearmedizin/ NuclearMedicine mit Diagnostik und Therapie in der Nuklearmedizin und dem Strahlenschutz: Originalien, Übersichtsarbeiten, Referate und Kongressberichte stellen aktuelle Themen der Diagnose und Therapie dar. Ausführliche Berichte aus den DGN-Arbeitskreisen, Nachrichten aus Forschung und Industrie sowie Beschreibungen innovativer technischer Geräte, Einrichtungen und Systeme runden das Konzept ab. Die Abstracts der Jahrestagungen dreier europäischer Fachgesellschaften sind Bestandteil der Kongressausgaben. Nuklearmedizin erscheint regelmäßig mit sechs Ausgaben pro Jahr und richtet sich vor allem an Nuklearmediziner, Radiologen, Strahlentherapeuten, Medizinphysiker und Radiopharmazeuten.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信