胚胎干细胞衍生的收集管和输尿管样结构与宿主肾脏的连接。

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Organogenesis Pub Date : 2021-10-02 Epub Date: 2021-09-27 DOI:10.1080/15476278.2021.1936785
May Sallam, Jamie Davies
{"title":"胚胎干细胞衍生的收集管和输尿管样结构与宿主肾脏的连接。","authors":"May Sallam,&nbsp;Jamie Davies","doi":"10.1080/15476278.2021.1936785","DOIUrl":null,"url":null,"abstract":"<p><p>Work toward renal generation generally aims either to introduce suspensions of stem cells into kidneys in the hope that they will rebuild damaged tissue, or to construct complete new kidneys from stem cells with the aim of transplanting the engineered organs. In principle, there might be a third approach; to engineer renal tissue 'modules' in vitro and to use them to replace sections of damaged host kidney. This approach would require the urine collecting system or ureter of the new tissues to connect to those of the host. In this report, we demonstrate a method that allows collecting duct trees or ureters, engineered from ES cells, to connect to the collecting duct system or ureter, respectively, of fetal kidneys in culture.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"17 3-4","pages":"40-49"},"PeriodicalIF":1.6000,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208768/pdf/","citationCount":"1","resultStr":"{\"title\":\"Connection of ES Cell-derived Collecting Ducts and Ureter-like Structures to Host Kidneys in Culture.\",\"authors\":\"May Sallam,&nbsp;Jamie Davies\",\"doi\":\"10.1080/15476278.2021.1936785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Work toward renal generation generally aims either to introduce suspensions of stem cells into kidneys in the hope that they will rebuild damaged tissue, or to construct complete new kidneys from stem cells with the aim of transplanting the engineered organs. In principle, there might be a third approach; to engineer renal tissue 'modules' in vitro and to use them to replace sections of damaged host kidney. This approach would require the urine collecting system or ureter of the new tissues to connect to those of the host. In this report, we demonstrate a method that allows collecting duct trees or ureters, engineered from ES cells, to connect to the collecting duct system or ureter, respectively, of fetal kidneys in culture.</p>\",\"PeriodicalId\":19596,\"journal\":{\"name\":\"Organogenesis\",\"volume\":\"17 3-4\",\"pages\":\"40-49\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208768/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organogenesis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15476278.2021.1936785\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organogenesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15476278.2021.1936785","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

肾脏生成的研究通常旨在将干细胞悬浮液引入肾脏,希望它们能重建受损组织,或者用干细胞构建完整的新肾脏,目的是移植工程器官。原则上,可能存在第三种方法;在体外设计肾脏组织“模块”,并用它们来替代受损的宿主肾脏。这种方法需要新组织的尿液收集系统或输尿管与宿主的尿液收集系统或输尿管相连。在本报告中,我们展示了一种方法,可以将胚胎干细胞工程的收集管树或输尿管分别连接到培养的胎儿肾脏的收集管系统或输尿管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Connection of ES Cell-derived Collecting Ducts and Ureter-like Structures to Host Kidneys in Culture.

Connection of ES Cell-derived Collecting Ducts and Ureter-like Structures to Host Kidneys in Culture.

Connection of ES Cell-derived Collecting Ducts and Ureter-like Structures to Host Kidneys in Culture.

Connection of ES Cell-derived Collecting Ducts and Ureter-like Structures to Host Kidneys in Culture.

Work toward renal generation generally aims either to introduce suspensions of stem cells into kidneys in the hope that they will rebuild damaged tissue, or to construct complete new kidneys from stem cells with the aim of transplanting the engineered organs. In principle, there might be a third approach; to engineer renal tissue 'modules' in vitro and to use them to replace sections of damaged host kidney. This approach would require the urine collecting system or ureter of the new tissues to connect to those of the host. In this report, we demonstrate a method that allows collecting duct trees or ureters, engineered from ES cells, to connect to the collecting duct system or ureter, respectively, of fetal kidneys in culture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organogenesis
Organogenesis BIOCHEMISTRY & MOLECULAR BIOLOGY-DEVELOPMENTAL BIOLOGY
CiteScore
4.10
自引率
4.30%
发文量
6
审稿时长
>12 weeks
期刊介绍: Organogenesis is a peer-reviewed journal, available in print and online, that publishes significant advances on all aspects of organ development. The journal covers organogenesis in all multi-cellular organisms and also includes research into tissue engineering, artificial organs and organ substitutes. The overriding criteria for publication in Organogenesis are originality, scientific merit and general interest. The audience of the journal consists primarily of researchers and advanced students of anatomy, developmental biology and tissue engineering. The emphasis of the journal is on experimental papers (full-length and brief communications), but it will also publish reviews, hypotheses and commentaries. The Editors encourage the submission of addenda, which are essentially auto-commentaries on significant research recently published elsewhere with additional insights, new interpretations or speculations on a relevant topic. If you have interesting data or an original hypothesis about organ development or artificial organs, please send a pre-submission inquiry to the Editor-in-Chief. You will normally receive a reply within days. All manuscripts will be subjected to peer review, and accepted manuscripts will be posted to the electronic site of the journal immediately and will appear in print at the earliest opportunity thereafter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信