Vincent A Stadelmann, Gabrielle Boyd, Martin Guillot, Jean-Guy Bienvenu, Charles Glaus, Aurore Varela
{"title":"在离体小鼠主动脉增强微ct扫描中动脉粥样硬化的自动定量。","authors":"Vincent A Stadelmann, Gabrielle Boyd, Martin Guillot, Jean-Guy Bienvenu, Charles Glaus, Aurore Varela","doi":"10.1155/2021/4998786","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>While microCT evaluation of atherosclerotic lesions in mice has been formally validated, existing image processing methods remain undisclosed. We aimed to develop and validate a reproducible image processing workflow based on phosphotungstic acid-enhanced microCT scans for the volumetric quantification of atherosclerotic lesions in entire mouse aortas. <i>Approach and Results</i>. 42 WT and 42 apolipoprotein E knockout mouse aortas were scanned. The walls, lumen, and plaque objects were segmented using dual-threshold algorithms. Aortic and plaque volumes were computed by voxel counting and lesion surface by triangulation. The results were validated against manual and histological evaluations. Knockout mice had a significant increase in plaque volume compared to wild types with a plaque to aorta volume ratio of 0.3%, 2.8%, and 9.8% at weeks 13, 18, and 26, respectively. Automatic segmentation correlated with manual (<i>r</i> <sup>2</sup> ≥ 0.89; <i>p</i> < .001) and histological evaluations (<i>r</i> <sup>2</sup> > 0.96; <i>p</i> < .001).</p><p><strong>Conclusions: </strong>The semiautomatic workflow enabled rapid quantification of atherosclerotic plaques in mice with minimal manual work.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"4998786"},"PeriodicalIF":4.3000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8478544/pdf/","citationCount":"3","resultStr":"{\"title\":\"Automatic Quantification of Atherosclerosis in Contrast-Enhanced MicroCT Scans of Mouse Aortas Ex Vivo.\",\"authors\":\"Vincent A Stadelmann, Gabrielle Boyd, Martin Guillot, Jean-Guy Bienvenu, Charles Glaus, Aurore Varela\",\"doi\":\"10.1155/2021/4998786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>While microCT evaluation of atherosclerotic lesions in mice has been formally validated, existing image processing methods remain undisclosed. We aimed to develop and validate a reproducible image processing workflow based on phosphotungstic acid-enhanced microCT scans for the volumetric quantification of atherosclerotic lesions in entire mouse aortas. <i>Approach and Results</i>. 42 WT and 42 apolipoprotein E knockout mouse aortas were scanned. The walls, lumen, and plaque objects were segmented using dual-threshold algorithms. Aortic and plaque volumes were computed by voxel counting and lesion surface by triangulation. The results were validated against manual and histological evaluations. Knockout mice had a significant increase in plaque volume compared to wild types with a plaque to aorta volume ratio of 0.3%, 2.8%, and 9.8% at weeks 13, 18, and 26, respectively. Automatic segmentation correlated with manual (<i>r</i> <sup>2</sup> ≥ 0.89; <i>p</i> < .001) and histological evaluations (<i>r</i> <sup>2</sup> > 0.96; <i>p</i> < .001).</p><p><strong>Conclusions: </strong>The semiautomatic workflow enabled rapid quantification of atherosclerotic plaques in mice with minimal manual work.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\" \",\"pages\":\"4998786\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8478544/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/4998786\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/4998786","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Automatic Quantification of Atherosclerosis in Contrast-Enhanced MicroCT Scans of Mouse Aortas Ex Vivo.
Objective: While microCT evaluation of atherosclerotic lesions in mice has been formally validated, existing image processing methods remain undisclosed. We aimed to develop and validate a reproducible image processing workflow based on phosphotungstic acid-enhanced microCT scans for the volumetric quantification of atherosclerotic lesions in entire mouse aortas. Approach and Results. 42 WT and 42 apolipoprotein E knockout mouse aortas were scanned. The walls, lumen, and plaque objects were segmented using dual-threshold algorithms. Aortic and plaque volumes were computed by voxel counting and lesion surface by triangulation. The results were validated against manual and histological evaluations. Knockout mice had a significant increase in plaque volume compared to wild types with a plaque to aorta volume ratio of 0.3%, 2.8%, and 9.8% at weeks 13, 18, and 26, respectively. Automatic segmentation correlated with manual (r2 ≥ 0.89; p < .001) and histological evaluations (r2 > 0.96; p < .001).
Conclusions: The semiautomatic workflow enabled rapid quantification of atherosclerotic plaques in mice with minimal manual work.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico