Tuo Han, Yajie Fan, Jie Gao, Mahreen Fatima, Yali Zhang, Yiming Ding, Liang Bai, Congxia Wang
{"title":"钠葡萄糖共转运蛋白2抑制剂达格列净抑制高脂饮食诱导的肥胖小鼠的肥胖和改善肝脂肪变性。","authors":"Tuo Han, Yajie Fan, Jie Gao, Mahreen Fatima, Yali Zhang, Yiming Ding, Liang Bai, Congxia Wang","doi":"10.1080/21623945.2021.1979277","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing obesity prevalence, the rates of obesity-related diseases, including type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases, have increased dramatically. Dapagliflozin, one of the sodium glucose cotransporter inhibitors, not only exerts hypoglycaemic effects through increasing urinary glucose excretion but alsoreprograms the metabolic system, leading to benefits in metabolic and cardiovascular diseases. In this study, pre-established obese mice on a high-fat diet were given dapagliflozin by gavage for fourweeks. It showed that dapagliflozin can enhance fat utilization and browning of adipose tissue and improve local oxidative stress, thus inhibiting fat accumulation and hepatic steatosis without disturbance in body weight or plasma glycolipid level. Overall, our study highlights the potential clinical application of SGLT2 inhibition in the prevention of obesity and related metabolic diseases, such as insulin resistance, NAFLD, and diabetes.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"10 1","pages":"446-455"},"PeriodicalIF":3.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8475578/pdf/","citationCount":"5","resultStr":"{\"title\":\"Sodium glucose cotransporter 2 inhibitor dapagliflozin depressed adiposity and ameliorated hepatic steatosis in high-fat diet induced obese mice.\",\"authors\":\"Tuo Han, Yajie Fan, Jie Gao, Mahreen Fatima, Yali Zhang, Yiming Ding, Liang Bai, Congxia Wang\",\"doi\":\"10.1080/21623945.2021.1979277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the increasing obesity prevalence, the rates of obesity-related diseases, including type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases, have increased dramatically. Dapagliflozin, one of the sodium glucose cotransporter inhibitors, not only exerts hypoglycaemic effects through increasing urinary glucose excretion but alsoreprograms the metabolic system, leading to benefits in metabolic and cardiovascular diseases. In this study, pre-established obese mice on a high-fat diet were given dapagliflozin by gavage for fourweeks. It showed that dapagliflozin can enhance fat utilization and browning of adipose tissue and improve local oxidative stress, thus inhibiting fat accumulation and hepatic steatosis without disturbance in body weight or plasma glycolipid level. Overall, our study highlights the potential clinical application of SGLT2 inhibition in the prevention of obesity and related metabolic diseases, such as insulin resistance, NAFLD, and diabetes.</p>\",\"PeriodicalId\":7226,\"journal\":{\"name\":\"Adipocyte\",\"volume\":\"10 1\",\"pages\":\"446-455\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8475578/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adipocyte\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21623945.2021.1979277\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2021.1979277","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Sodium glucose cotransporter 2 inhibitor dapagliflozin depressed adiposity and ameliorated hepatic steatosis in high-fat diet induced obese mice.
With the increasing obesity prevalence, the rates of obesity-related diseases, including type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases, have increased dramatically. Dapagliflozin, one of the sodium glucose cotransporter inhibitors, not only exerts hypoglycaemic effects through increasing urinary glucose excretion but alsoreprograms the metabolic system, leading to benefits in metabolic and cardiovascular diseases. In this study, pre-established obese mice on a high-fat diet were given dapagliflozin by gavage for fourweeks. It showed that dapagliflozin can enhance fat utilization and browning of adipose tissue and improve local oxidative stress, thus inhibiting fat accumulation and hepatic steatosis without disturbance in body weight or plasma glycolipid level. Overall, our study highlights the potential clinical application of SGLT2 inhibition in the prevention of obesity and related metabolic diseases, such as insulin resistance, NAFLD, and diabetes.
期刊介绍:
Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.