在线网络监控。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2021-01-01 Epub Date: 2021-09-15 DOI:10.1007/s10260-021-00589-z
Anna Malinovskaya, Philipp Otto
{"title":"在线网络监控。","authors":"Anna Malinovskaya,&nbsp;Philipp Otto","doi":"10.1007/s10260-021-00589-z","DOIUrl":null,"url":null,"abstract":"<p><p>An important problem in network analysis is the online detection of anomalous behaviour. In this paper, we introduce a network surveillance method bringing together network modelling and statistical process control. Our approach is to apply multivariate control charts based on exponential smoothing and cumulative sums in order to monitor networks generated by temporal exponential random graph models (TERGM). The latter allows us to account for temporal dependence while simultaneously reducing the number of parameters to be monitored. The performance of the considered charts is evaluated by calculating the average run length and the conditional expected delay for both simulated and real data. To justify the decision of using the TERGM to describe network data, some measures of goodness of fit are inspected. We demonstrate the effectiveness of the proposed approach by an empirical application, monitoring daily flights in the United States to detect anomalous patterns.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440157/pdf/","citationCount":"4","resultStr":"{\"title\":\"Online network monitoring.\",\"authors\":\"Anna Malinovskaya,&nbsp;Philipp Otto\",\"doi\":\"10.1007/s10260-021-00589-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An important problem in network analysis is the online detection of anomalous behaviour. In this paper, we introduce a network surveillance method bringing together network modelling and statistical process control. Our approach is to apply multivariate control charts based on exponential smoothing and cumulative sums in order to monitor networks generated by temporal exponential random graph models (TERGM). The latter allows us to account for temporal dependence while simultaneously reducing the number of parameters to be monitored. The performance of the considered charts is evaluated by calculating the average run length and the conditional expected delay for both simulated and real data. To justify the decision of using the TERGM to describe network data, some measures of goodness of fit are inspected. We demonstrate the effectiveness of the proposed approach by an empirical application, monitoring daily flights in the United States to detect anomalous patterns.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440157/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10260-021-00589-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10260-021-00589-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

网络分析中的一个重要问题是异常行为的在线检测。本文介绍了一种将网络建模和统计过程控制相结合的网络监测方法。我们的方法是应用基于指数平滑和累积和的多变量控制图来监测由时间指数随机图模型(TERGM)生成的网络。后者允许我们考虑时间依赖性,同时减少要监测的参数的数量。通过计算模拟和真实数据的平均运行长度和条件预期延迟来评估所考虑的图表的性能。为了证明使用TERGM来描述网络数据的决定是正确的,对一些拟合优度的度量进行了检验。我们通过经验应用证明了所提出方法的有效性,监测美国的日常航班以检测异常模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Online network monitoring.

Online network monitoring.

Online network monitoring.

Online network monitoring.

An important problem in network analysis is the online detection of anomalous behaviour. In this paper, we introduce a network surveillance method bringing together network modelling and statistical process control. Our approach is to apply multivariate control charts based on exponential smoothing and cumulative sums in order to monitor networks generated by temporal exponential random graph models (TERGM). The latter allows us to account for temporal dependence while simultaneously reducing the number of parameters to be monitored. The performance of the considered charts is evaluated by calculating the average run length and the conditional expected delay for both simulated and real data. To justify the decision of using the TERGM to describe network data, some measures of goodness of fit are inspected. We demonstrate the effectiveness of the proposed approach by an empirical application, monitoring daily flights in the United States to detect anomalous patterns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信