{"title":"慢性创伤性完全性胸脊髓损伤后脑区解剖变化的增加/减少。","authors":"Takashi Murayama, Kousuke Takahama, Kazumasa Jinbo, Tomoyoshi Kobari","doi":"10.1298/ptr.E10076","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to investigate anatomical changes in the brain following chronic complete traumatic thoracic spinal cord injury (ThSCI) using voxel-based morphometry (VBM). That is, it attempted to examine dynamic physical change following thoracic injury and the presence or absence of regions with decreased and increased changes in whole brain volume associated with change in the manner of how activities of daily living are performed.</p><p><strong>Methods: </strong>Twelve individuals with chronic traumatic complete ThSCI (age; 21-63 years, American Spinal Injury Association Impairment Scale; grade C-D) participated in this study. VBM was used to investigate the regions with increased volume and decreased volume in the brain in comparison with healthy control individuals.</p><p><strong>Results: </strong>Decreases in volume were noted in areas associated with motor and somatosensory functions, including the right paracentral lobule (PCL)-the primary motor sensory area for lower limbs, left dorsal premotor cortex, and left superior parietal lobule (SPL). Furthermore, increased gray matter volume was noted in the primary sensorimotor area for fingers and arms, as well as in higher sensory areas.</p><p><strong>Conclusions: </strong>Following SCI both regions with increased volume and regions with decreased volume were present in the brain in accordance with changes in physical function. Using longitudinal observation, anatomical changes in the brain may be used to determine the rehabilitation effect by comparing present cases with cases with cervical SCI or cases with incomplete palsy.</p>","PeriodicalId":74445,"journal":{"name":"Physical therapy research","volume":"24 2","pages":"163-169"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8419593/pdf/ptr-24-02-0163.pdf","citationCount":"2","resultStr":"{\"title\":\"Anatomical Increased/Decreased Changes in the Brain Area Following Individuals with Chronic Traumatic Complete Thoracic Spinal Cord Injury.\",\"authors\":\"Takashi Murayama, Kousuke Takahama, Kazumasa Jinbo, Tomoyoshi Kobari\",\"doi\":\"10.1298/ptr.E10076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aimed to investigate anatomical changes in the brain following chronic complete traumatic thoracic spinal cord injury (ThSCI) using voxel-based morphometry (VBM). That is, it attempted to examine dynamic physical change following thoracic injury and the presence or absence of regions with decreased and increased changes in whole brain volume associated with change in the manner of how activities of daily living are performed.</p><p><strong>Methods: </strong>Twelve individuals with chronic traumatic complete ThSCI (age; 21-63 years, American Spinal Injury Association Impairment Scale; grade C-D) participated in this study. VBM was used to investigate the regions with increased volume and decreased volume in the brain in comparison with healthy control individuals.</p><p><strong>Results: </strong>Decreases in volume were noted in areas associated with motor and somatosensory functions, including the right paracentral lobule (PCL)-the primary motor sensory area for lower limbs, left dorsal premotor cortex, and left superior parietal lobule (SPL). Furthermore, increased gray matter volume was noted in the primary sensorimotor area for fingers and arms, as well as in higher sensory areas.</p><p><strong>Conclusions: </strong>Following SCI both regions with increased volume and regions with decreased volume were present in the brain in accordance with changes in physical function. Using longitudinal observation, anatomical changes in the brain may be used to determine the rehabilitation effect by comparing present cases with cases with cervical SCI or cases with incomplete palsy.</p>\",\"PeriodicalId\":74445,\"journal\":{\"name\":\"Physical therapy research\",\"volume\":\"24 2\",\"pages\":\"163-169\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8419593/pdf/ptr-24-02-0163.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical therapy research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1298/ptr.E10076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical therapy research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1298/ptr.E10076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Anatomical Increased/Decreased Changes in the Brain Area Following Individuals with Chronic Traumatic Complete Thoracic Spinal Cord Injury.
Objectives: This study aimed to investigate anatomical changes in the brain following chronic complete traumatic thoracic spinal cord injury (ThSCI) using voxel-based morphometry (VBM). That is, it attempted to examine dynamic physical change following thoracic injury and the presence or absence of regions with decreased and increased changes in whole brain volume associated with change in the manner of how activities of daily living are performed.
Methods: Twelve individuals with chronic traumatic complete ThSCI (age; 21-63 years, American Spinal Injury Association Impairment Scale; grade C-D) participated in this study. VBM was used to investigate the regions with increased volume and decreased volume in the brain in comparison with healthy control individuals.
Results: Decreases in volume were noted in areas associated with motor and somatosensory functions, including the right paracentral lobule (PCL)-the primary motor sensory area for lower limbs, left dorsal premotor cortex, and left superior parietal lobule (SPL). Furthermore, increased gray matter volume was noted in the primary sensorimotor area for fingers and arms, as well as in higher sensory areas.
Conclusions: Following SCI both regions with increased volume and regions with decreased volume were present in the brain in accordance with changes in physical function. Using longitudinal observation, anatomical changes in the brain may be used to determine the rehabilitation effect by comparing present cases with cases with cervical SCI or cases with incomplete palsy.