{"title":"古细菌病毒的出口","authors":"Diana P. Baquero, Junfeng Liu, David Prangishvili","doi":"10.1111/cmi.13394","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Viruses of Archaea, arguably the most mysterious part of the virosphere due to their unique morphotypes and genome contents, exploit diverse mechanisms for releasing virus progeny from the host cell. These include virus release as a result of the enzymatic degradation of the cell wall or budding through it, common for viruses of Bacteria and Eukarya, as well as a unique mechanism of virus egress through small polygonal perforations on the cell surface. The process of the formation of these perforations includes the development of pyramidal structures on the membrane of the infected cell, which gradually grow by the expansion of their faces and eventually open like flower petals. This mechanism of virion release is operating exclusively in cells of hyperthermophilic hosts from the phylum Crenarchaeota, which are encased solely by a layer of surface proteins, S-layer. The review focuses on recent developments in understanding structural and biochemical details of all three types of egress mechanisms of archaeal viruses.</p>\n </section>\n \n <section>\n \n <h3> Take Aways</h3>\n \n <div>\n <ul>\n \n <li>Many archaeal viruses exit the host via polygonal perforations on the cell membrane.</li>\n \n <li>The molecular mechanism of exit via specific apertures is unique for archaeal viruses.</li>\n \n <li>Some enveloped archaeal viruses exploit the budding mechanism for egress.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":"23 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/cmi.13394","citationCount":"5","resultStr":"{\"title\":\"Egress of archaeal viruses\",\"authors\":\"Diana P. Baquero, Junfeng Liu, David Prangishvili\",\"doi\":\"10.1111/cmi.13394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Viruses of Archaea, arguably the most mysterious part of the virosphere due to their unique morphotypes and genome contents, exploit diverse mechanisms for releasing virus progeny from the host cell. These include virus release as a result of the enzymatic degradation of the cell wall or budding through it, common for viruses of Bacteria and Eukarya, as well as a unique mechanism of virus egress through small polygonal perforations on the cell surface. The process of the formation of these perforations includes the development of pyramidal structures on the membrane of the infected cell, which gradually grow by the expansion of their faces and eventually open like flower petals. This mechanism of virion release is operating exclusively in cells of hyperthermophilic hosts from the phylum Crenarchaeota, which are encased solely by a layer of surface proteins, S-layer. The review focuses on recent developments in understanding structural and biochemical details of all three types of egress mechanisms of archaeal viruses.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Take Aways</h3>\\n \\n <div>\\n <ul>\\n \\n <li>Many archaeal viruses exit the host via polygonal perforations on the cell membrane.</li>\\n \\n <li>The molecular mechanism of exit via specific apertures is unique for archaeal viruses.</li>\\n \\n <li>Some enveloped archaeal viruses exploit the budding mechanism for egress.</li>\\n </ul>\\n </div>\\n </section>\\n </div>\",\"PeriodicalId\":9844,\"journal\":{\"name\":\"Cellular Microbiology\",\"volume\":\"23 12\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/cmi.13394\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cmi.13394\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cmi.13394","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Viruses of Archaea, arguably the most mysterious part of the virosphere due to their unique morphotypes and genome contents, exploit diverse mechanisms for releasing virus progeny from the host cell. These include virus release as a result of the enzymatic degradation of the cell wall or budding through it, common for viruses of Bacteria and Eukarya, as well as a unique mechanism of virus egress through small polygonal perforations on the cell surface. The process of the formation of these perforations includes the development of pyramidal structures on the membrane of the infected cell, which gradually grow by the expansion of their faces and eventually open like flower petals. This mechanism of virion release is operating exclusively in cells of hyperthermophilic hosts from the phylum Crenarchaeota, which are encased solely by a layer of surface proteins, S-layer. The review focuses on recent developments in understanding structural and biochemical details of all three types of egress mechanisms of archaeal viruses.
Take Aways
Many archaeal viruses exit the host via polygonal perforations on the cell membrane.
The molecular mechanism of exit via specific apertures is unique for archaeal viruses.
Some enveloped archaeal viruses exploit the budding mechanism for egress.
期刊介绍:
Cellular Microbiology aims to publish outstanding contributions to the understanding of interactions between microbes, prokaryotes and eukaryotes, and their host in the context of pathogenic or mutualistic relationships, including co-infections and microbiota. We welcome studies on single cells, animals and plants, and encourage the use of model hosts and organoid cultures. Submission on cell and molecular biological aspects of microbes, such as their intracellular organization or the establishment and maintenance of their architecture in relation to virulence and pathogenicity are also encouraged. Contributions must provide mechanistic insights supported by quantitative data obtained through imaging, cellular, biochemical, structural or genetic approaches.