深度学习卷积神经网络(DLCNN):释放淋巴瘤 18F-FDG PET/CT 的潜能。

IF 2 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
American journal of nuclear medicine and molecular imaging Pub Date : 2021-08-15 eCollection Date: 2021-01-01
Ke Li, Ran Zhang, Weibo Cai
{"title":"深度学习卷积神经网络(DLCNN):释放淋巴瘤 18F-FDG PET/CT 的潜能。","authors":"Ke Li, Ran Zhang, Weibo Cai","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This perspective briefly reviewed the applications of <sup>18</sup>F-FDG PET/CT in the clinical management of lymphoma and the need for lesion segmentation in those applications. It discussed the limitations of existing segmentation technologies and the great potential of using deep learning convolutional neural network (DLCNN) to accomplish automatic lymphoma segmentation and characterizations. Finally, the authors shared perspectives on the technical challenges that need to be addressed to fully unleash the potential of DLCNN and <sup>18</sup>F-FDG PET/CT in the diagnosis, prognosis, and treatment of lymphoma.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"11 4","pages":"327-331"},"PeriodicalIF":2.0000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8414402/pdf/ajnmmi0011-0327.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep learning convolutional neural network (DLCNN): unleashing the potential of <sup>18</sup>F-FDG PET/CT in lymphoma.\",\"authors\":\"Ke Li, Ran Zhang, Weibo Cai\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This perspective briefly reviewed the applications of <sup>18</sup>F-FDG PET/CT in the clinical management of lymphoma and the need for lesion segmentation in those applications. It discussed the limitations of existing segmentation technologies and the great potential of using deep learning convolutional neural network (DLCNN) to accomplish automatic lymphoma segmentation and characterizations. Finally, the authors shared perspectives on the technical challenges that need to be addressed to fully unleash the potential of DLCNN and <sup>18</sup>F-FDG PET/CT in the diagnosis, prognosis, and treatment of lymphoma.</p>\",\"PeriodicalId\":7572,\"journal\":{\"name\":\"American journal of nuclear medicine and molecular imaging\",\"volume\":\"11 4\",\"pages\":\"327-331\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8414402/pdf/ajnmmi0011-0327.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of nuclear medicine and molecular imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of nuclear medicine and molecular imaging","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

本视角简要回顾了 18F-FDG PET/CT 在淋巴瘤临床治疗中的应用,以及在这些应用中对病灶分割的需求。它讨论了现有分割技术的局限性,以及使用深度学习卷积神经网络(DLCNN)完成淋巴瘤自动分割和特征描述的巨大潜力。最后,作者分享了对需要解决的技术挑战的看法,以充分释放 DLCNN 和 18F-FDG PET/CT 在淋巴瘤诊断、预后和治疗中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning convolutional neural network (DLCNN): unleashing the potential of 18F-FDG PET/CT in lymphoma.

This perspective briefly reviewed the applications of 18F-FDG PET/CT in the clinical management of lymphoma and the need for lesion segmentation in those applications. It discussed the limitations of existing segmentation technologies and the great potential of using deep learning convolutional neural network (DLCNN) to accomplish automatic lymphoma segmentation and characterizations. Finally, the authors shared perspectives on the technical challenges that need to be addressed to fully unleash the potential of DLCNN and 18F-FDG PET/CT in the diagnosis, prognosis, and treatment of lymphoma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American journal of nuclear medicine and molecular imaging
American journal of nuclear medicine and molecular imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
自引率
4.00%
发文量
4
期刊介绍: The scope of AJNMMI encompasses all areas of molecular imaging, including but not limited to: positron emission tomography (PET), single-photon emission computed tomography (SPECT), molecular magnetic resonance imaging, magnetic resonance spectroscopy, optical bioluminescence, optical fluorescence, targeted ultrasound, photoacoustic imaging, etc. AJNMMI welcomes original and review articles on both clinical investigation and preclinical research. Occasionally, special topic issues, short communications, editorials, and invited perspectives will also be published. Manuscripts, including figures and tables, must be original and not under consideration by another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信