Steven McGuigan, Lisbeth Evered, David A Scott, Brendan Silbert, Henrik Zetterberg, Kaj Blennow
{"title":"比较氙气和七氟醚麻醉对术后神经损伤生物标志物的影响:一项随机对照试验。","authors":"Steven McGuigan, Lisbeth Evered, David A Scott, Brendan Silbert, Henrik Zetterberg, Kaj Blennow","doi":"10.4103/2045-9912.324591","DOIUrl":null,"url":null,"abstract":"<p><p>General anesthesia and surgery are associated with an increase in neural injury biomarkers. Elevations of these neural injury biomarkers in the perioperative period are associated with postoperative delirium. Xenon has been shown to be protective against a range of neurological insults in animal models. It remains to be seen if xenon anesthesia is neuroprotective in the perioperative setting in humans. Twenty-four participants scheduled for lithotripsy were randomized to receive either xenon or sevoflurane general anesthesia. There was no statistically significant difference in the concentrations of postoperative neural injury biomarkers between the xenon and sevoflurane group. Following the procedure there was a significant increase in the concentration from baseline of all three biomarkers at 1 hour post-induction with a return to baseline at 5 hours. General anesthesia for lithotripsy was associated with a significant increase at 1 hour post-induction in the neural injury biomarkers total tau, neurofilament light and tau phosphorylated at threonine 181, a marker of tau phosphorylation. The protocol was approved by the St. Vincent's Hospital Melbourne Ethics Committee (approval No. HREC/18/SVHM/221) on July 20, 2018 and was registered with the Australia New Zealand Clinical Trials Registry (registration No. ACTRN12618000916246) on May 31, 2018.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"12 1","pages":"10-17"},"PeriodicalIF":3.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f4/e9/MGR-12-10.PMC8447955.pdf","citationCount":"4","resultStr":"{\"title\":\"Comparing the effect of xenon and sevoflurane anesthesia on postoperative neural injury biomarkers: a randomized controlled trial.\",\"authors\":\"Steven McGuigan, Lisbeth Evered, David A Scott, Brendan Silbert, Henrik Zetterberg, Kaj Blennow\",\"doi\":\"10.4103/2045-9912.324591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>General anesthesia and surgery are associated with an increase in neural injury biomarkers. Elevations of these neural injury biomarkers in the perioperative period are associated with postoperative delirium. Xenon has been shown to be protective against a range of neurological insults in animal models. It remains to be seen if xenon anesthesia is neuroprotective in the perioperative setting in humans. Twenty-four participants scheduled for lithotripsy were randomized to receive either xenon or sevoflurane general anesthesia. There was no statistically significant difference in the concentrations of postoperative neural injury biomarkers between the xenon and sevoflurane group. Following the procedure there was a significant increase in the concentration from baseline of all three biomarkers at 1 hour post-induction with a return to baseline at 5 hours. General anesthesia for lithotripsy was associated with a significant increase at 1 hour post-induction in the neural injury biomarkers total tau, neurofilament light and tau phosphorylated at threonine 181, a marker of tau phosphorylation. The protocol was approved by the St. Vincent's Hospital Melbourne Ethics Committee (approval No. HREC/18/SVHM/221) on July 20, 2018 and was registered with the Australia New Zealand Clinical Trials Registry (registration No. ACTRN12618000916246) on May 31, 2018.</p>\",\"PeriodicalId\":18559,\"journal\":{\"name\":\"Medical Gas Research\",\"volume\":\"12 1\",\"pages\":\"10-17\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f4/e9/MGR-12-10.PMC8447955.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Gas Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/2045-9912.324591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2045-9912.324591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Comparing the effect of xenon and sevoflurane anesthesia on postoperative neural injury biomarkers: a randomized controlled trial.
General anesthesia and surgery are associated with an increase in neural injury biomarkers. Elevations of these neural injury biomarkers in the perioperative period are associated with postoperative delirium. Xenon has been shown to be protective against a range of neurological insults in animal models. It remains to be seen if xenon anesthesia is neuroprotective in the perioperative setting in humans. Twenty-four participants scheduled for lithotripsy were randomized to receive either xenon or sevoflurane general anesthesia. There was no statistically significant difference in the concentrations of postoperative neural injury biomarkers between the xenon and sevoflurane group. Following the procedure there was a significant increase in the concentration from baseline of all three biomarkers at 1 hour post-induction with a return to baseline at 5 hours. General anesthesia for lithotripsy was associated with a significant increase at 1 hour post-induction in the neural injury biomarkers total tau, neurofilament light and tau phosphorylated at threonine 181, a marker of tau phosphorylation. The protocol was approved by the St. Vincent's Hospital Melbourne Ethics Committee (approval No. HREC/18/SVHM/221) on July 20, 2018 and was registered with the Australia New Zealand Clinical Trials Registry (registration No. ACTRN12618000916246) on May 31, 2018.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.