{"title":"海洋氧化的历史。","authors":"Christopher T Reinhard, Noah J Planavsky","doi":"10.1146/annurev-marine-031721-104005","DOIUrl":null,"url":null,"abstract":"<p><p>The large-scale dynamics of ocean oxygenation have changed dramatically throughout Earth's history, in step with major changes in the abundance of O<sub>2</sub> in the atmosphere and changes to marine nutrient availability. A comprehensive mechanistic understanding of this history requires insights from oceanography, marine geology, geochemistry, geomicrobiology, evolutionary ecology, and Earth system modeling. Here, we attempt to synthesize the major features of evolving ocean oxygenation on Earth through more than 3 billion years of planetary history. We review the fundamental first-order controls on ocean oxygen distribution and summarize the current understanding of the history of ocean oxygenation on Earth from empirical and theoretical perspectives-integrating geochemical reconstructions of oceanic and atmospheric chemistry, genomic constraints on evolving microbial metabolism, and mechanistic biogeochemical models. These changes are used to illustrate primary regimes of large-scale ocean oxygenation and to highlight feedbacks that can act to stabilize and destabilize the ocean-atmosphere system in anoxic, low-oxygen, and high-oxygen states.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":"14 ","pages":"331-353"},"PeriodicalIF":14.3000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"The History of Ocean Oxygenation.\",\"authors\":\"Christopher T Reinhard, Noah J Planavsky\",\"doi\":\"10.1146/annurev-marine-031721-104005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The large-scale dynamics of ocean oxygenation have changed dramatically throughout Earth's history, in step with major changes in the abundance of O<sub>2</sub> in the atmosphere and changes to marine nutrient availability. A comprehensive mechanistic understanding of this history requires insights from oceanography, marine geology, geochemistry, geomicrobiology, evolutionary ecology, and Earth system modeling. Here, we attempt to synthesize the major features of evolving ocean oxygenation on Earth through more than 3 billion years of planetary history. We review the fundamental first-order controls on ocean oxygen distribution and summarize the current understanding of the history of ocean oxygenation on Earth from empirical and theoretical perspectives-integrating geochemical reconstructions of oceanic and atmospheric chemistry, genomic constraints on evolving microbial metabolism, and mechanistic biogeochemical models. These changes are used to illustrate primary regimes of large-scale ocean oxygenation and to highlight feedbacks that can act to stabilize and destabilize the ocean-atmosphere system in anoxic, low-oxygen, and high-oxygen states.</p>\",\"PeriodicalId\":55508,\"journal\":{\"name\":\"Annual Review of Marine Science\",\"volume\":\"14 \",\"pages\":\"331-353\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2022-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Marine Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-marine-031721-104005\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Marine Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-marine-031721-104005","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The large-scale dynamics of ocean oxygenation have changed dramatically throughout Earth's history, in step with major changes in the abundance of O2 in the atmosphere and changes to marine nutrient availability. A comprehensive mechanistic understanding of this history requires insights from oceanography, marine geology, geochemistry, geomicrobiology, evolutionary ecology, and Earth system modeling. Here, we attempt to synthesize the major features of evolving ocean oxygenation on Earth through more than 3 billion years of planetary history. We review the fundamental first-order controls on ocean oxygen distribution and summarize the current understanding of the history of ocean oxygenation on Earth from empirical and theoretical perspectives-integrating geochemical reconstructions of oceanic and atmospheric chemistry, genomic constraints on evolving microbial metabolism, and mechanistic biogeochemical models. These changes are used to illustrate primary regimes of large-scale ocean oxygenation and to highlight feedbacks that can act to stabilize and destabilize the ocean-atmosphere system in anoxic, low-oxygen, and high-oxygen states.
期刊介绍:
The Annual Review of Marine Science, published since 2009, offers a comprehensive overview of the field. It covers various disciplines, including coastal and blue water oceanography (biological, chemical, geological, and physical), ecology, conservation, and technological advancements related to the marine environment. The journal's transition from gated to open access through Annual Reviews' Subscribe to Open program ensures that all articles are available under a CC BY license, promoting wider accessibility and dissemination of knowledge.