造血干细胞产生中间谱系脂肪祖细胞,同时表达脂肪组织中的髓系和间充质谱系标记。

IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM
Kathleen M Gavin, Timothy M Sullivan, Joanne K Maltzahn, Jeremy T Rahkola, Alistair S Acosta, Wendy M Kohrt, Susan M Majka, Dwight J Klemm
{"title":"造血干细胞产生中间谱系脂肪祖细胞,同时表达脂肪组织中的髓系和间充质谱系标记。","authors":"Kathleen M Gavin,&nbsp;Timothy M Sullivan,&nbsp;Joanne K Maltzahn,&nbsp;Jeremy T Rahkola,&nbsp;Alistair S Acosta,&nbsp;Wendy M Kohrt,&nbsp;Susan M Majka,&nbsp;Dwight J Klemm","doi":"10.1080/21623945.2021.1957290","DOIUrl":null,"url":null,"abstract":"<p><p>Some adipocytes are produced from bone marrow hematopoietic stem cells. <i>In vitro</i> studies previously indicated that these bone marrow-derived adipocytes (BMDAs) were generated from adipose tissue macrophage (ATM) that lose their hematopoietic markers and acquire mesenchymal markers prior to terminal adipogenic differentiation. Here we interrogated whether this hematopoietic-to-mesenchymal transition drives BMDA production <i>In vitro</i>. We generated transgenic mice in which the lysozyme gene promoter (LysM) indelibly labeled ATM with green fluorescent protein (GFP). We discovered that adipose stroma contained a population of LysM-positive myeloid cells that simultaneously expressed hematopoietic/myeloid markers (CD45 and CD11b), and mesenchymal markers (CD29, PDGFRa and Sca-1) typically found on conventional adipocyte progenitors. These cells were capable of adipogenic differentiation <i>In vitro</i> and <i>In vitro</i>, while other stromal populations deficient in PDGFRa and Sca-1 were non-adipogenic. BMDAs and conventional adipocytes expressed common fat cell markers but exhibited little or no expression of hematopoietic and mesenchymal progenitor cell markers. The data indicate that BMDAs are produced from ATM simultaneously expressing hematopoietic and mesenchymal markers rather than via a stepwise hematopoietic-to-mesenchymal transition. Because BMDA production is stimulated by high fat feeding, their production from hematopoietic progenitors may maintain adipocyte production when conventional adipocyte precursors are diminished.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"10 1","pages":"394-407"},"PeriodicalIF":3.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8381847/pdf/","citationCount":"4","resultStr":"{\"title\":\"Hematopoietic stem cells produce intermediate lineage adipocyte progenitors that simultaneously express both myeloid and mesenchymal lineage markers in adipose tissue.\",\"authors\":\"Kathleen M Gavin,&nbsp;Timothy M Sullivan,&nbsp;Joanne K Maltzahn,&nbsp;Jeremy T Rahkola,&nbsp;Alistair S Acosta,&nbsp;Wendy M Kohrt,&nbsp;Susan M Majka,&nbsp;Dwight J Klemm\",\"doi\":\"10.1080/21623945.2021.1957290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Some adipocytes are produced from bone marrow hematopoietic stem cells. <i>In vitro</i> studies previously indicated that these bone marrow-derived adipocytes (BMDAs) were generated from adipose tissue macrophage (ATM) that lose their hematopoietic markers and acquire mesenchymal markers prior to terminal adipogenic differentiation. Here we interrogated whether this hematopoietic-to-mesenchymal transition drives BMDA production <i>In vitro</i>. We generated transgenic mice in which the lysozyme gene promoter (LysM) indelibly labeled ATM with green fluorescent protein (GFP). We discovered that adipose stroma contained a population of LysM-positive myeloid cells that simultaneously expressed hematopoietic/myeloid markers (CD45 and CD11b), and mesenchymal markers (CD29, PDGFRa and Sca-1) typically found on conventional adipocyte progenitors. These cells were capable of adipogenic differentiation <i>In vitro</i> and <i>In vitro</i>, while other stromal populations deficient in PDGFRa and Sca-1 were non-adipogenic. BMDAs and conventional adipocytes expressed common fat cell markers but exhibited little or no expression of hematopoietic and mesenchymal progenitor cell markers. The data indicate that BMDAs are produced from ATM simultaneously expressing hematopoietic and mesenchymal markers rather than via a stepwise hematopoietic-to-mesenchymal transition. Because BMDA production is stimulated by high fat feeding, their production from hematopoietic progenitors may maintain adipocyte production when conventional adipocyte precursors are diminished.</p>\",\"PeriodicalId\":7226,\"journal\":{\"name\":\"Adipocyte\",\"volume\":\"10 1\",\"pages\":\"394-407\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8381847/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adipocyte\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21623945.2021.1957290\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2021.1957290","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 4

摘要

一些脂肪细胞由骨髓造血干细胞产生。先前的体外研究表明,这些骨髓来源的脂肪细胞(bmda)是由脂肪组织巨噬细胞(ATM)产生的,在最终的脂肪分化之前,巨噬细胞失去了造血标志物,获得了间充质标志物。在这里,我们询问这种造血到间质转化是否驱动BMDA的体外生成。我们产生了转基因小鼠,其中溶菌酶基因启动子(LysM)用绿色荧光蛋白(GFP)不可磨灭地标记ATM。我们发现脂肪基质中含有一群lysm阳性的骨髓细胞,这些细胞同时表达造血/骨髓标记物(CD45和CD11b)和间充质标记物(CD29, PDGFRa和Sca-1),这些标记物通常在传统的脂肪细胞祖细胞上发现。这些细胞能够在体外和体外分化成脂肪,而其他缺乏PDGFRa和Sca-1的基质群体则不形成脂肪。bmda和常规脂肪细胞表达常见的脂肪细胞标记,但造血和间充质祖细胞标记很少或不表达。数据表明,bmda是由同时表达造血和间质标志物的ATM产生的,而不是通过逐步的造血到间质转变。由于BMDA的产生受到高脂肪喂养的刺激,当常规脂肪细胞前体减少时,造血祖细胞产生的BMDA可能维持脂肪细胞的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hematopoietic stem cells produce intermediate lineage adipocyte progenitors that simultaneously express both myeloid and mesenchymal lineage markers in adipose tissue.

Hematopoietic stem cells produce intermediate lineage adipocyte progenitors that simultaneously express both myeloid and mesenchymal lineage markers in adipose tissue.

Hematopoietic stem cells produce intermediate lineage adipocyte progenitors that simultaneously express both myeloid and mesenchymal lineage markers in adipose tissue.

Hematopoietic stem cells produce intermediate lineage adipocyte progenitors that simultaneously express both myeloid and mesenchymal lineage markers in adipose tissue.

Some adipocytes are produced from bone marrow hematopoietic stem cells. In vitro studies previously indicated that these bone marrow-derived adipocytes (BMDAs) were generated from adipose tissue macrophage (ATM) that lose their hematopoietic markers and acquire mesenchymal markers prior to terminal adipogenic differentiation. Here we interrogated whether this hematopoietic-to-mesenchymal transition drives BMDA production In vitro. We generated transgenic mice in which the lysozyme gene promoter (LysM) indelibly labeled ATM with green fluorescent protein (GFP). We discovered that adipose stroma contained a population of LysM-positive myeloid cells that simultaneously expressed hematopoietic/myeloid markers (CD45 and CD11b), and mesenchymal markers (CD29, PDGFRa and Sca-1) typically found on conventional adipocyte progenitors. These cells were capable of adipogenic differentiation In vitro and In vitro, while other stromal populations deficient in PDGFRa and Sca-1 were non-adipogenic. BMDAs and conventional adipocytes expressed common fat cell markers but exhibited little or no expression of hematopoietic and mesenchymal progenitor cell markers. The data indicate that BMDAs are produced from ATM simultaneously expressing hematopoietic and mesenchymal markers rather than via a stepwise hematopoietic-to-mesenchymal transition. Because BMDA production is stimulated by high fat feeding, their production from hematopoietic progenitors may maintain adipocyte production when conventional adipocyte precursors are diminished.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Adipocyte
Adipocyte Medicine-Histology
CiteScore
6.50
自引率
3.00%
发文量
46
审稿时长
32 weeks
期刊介绍: Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信