嵴形态对线粒体ATP输出的影响:一个计算研究

IF 2.1 Q3 PHYSIOLOGY
Nasrin Afzal , W. Jonathan Lederer , M. Saleet Jafri , Carmen A. Mannella
{"title":"嵴形态对线粒体ATP输出的影响:一个计算研究","authors":"Nasrin Afzal ,&nbsp;W. Jonathan Lederer ,&nbsp;M. Saleet Jafri ,&nbsp;Carmen A. Mannella","doi":"10.1016/j.crphys.2021.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>Folding of the mitochondrial inner membrane (IM) into cristae greatly increases the ATP-generating surface area, <em>S</em><sub><strong>IM</strong></sub>, per unit volume but also creates diffusional bottlenecks that could limit reaction rates inside mitochondria. This study explores possible effects of inner membrane folding on mitochondrial ATP output, using a mathematical model for energy metabolism developed by the Jafri group and two- and three-dimensional spatial models for mitochondria, implemented on the Virtual Cell platform. Simulations demonstrate that cristae are micro-compartments functionally distinct from the cytosol. At physiological steady states, standing gradients of ADP form inside cristae that depend on the size and shape of the compartments, and reduce local flux (rate per unit area) of the adenine nucleotide translocase. This causes matrix ADP levels to drop, which in turn reduces the flux of ATP synthase. The adverse effects of membrane folding on reaction fluxes increase with crista length and are greater for lamellar than tubular crista. However, total ATP output per mitochondrion is the product of flux of ATP synthase and <em>S</em><sub><strong>IM</strong></sub> which can be two-fold greater for mitochondria with lamellar than tubular cristae, resulting in greater ATP output for the former. The simulations also demonstrate the crucial role played by intracristal kinases (adenylate kinase, creatine kinase) in maintaining the energy advantage of IM folding.</p></div>","PeriodicalId":72753,"journal":{"name":"Current research in physiology","volume":"4 ","pages":"Pages 163-176"},"PeriodicalIF":2.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crphys.2021.03.005","citationCount":"19","resultStr":"{\"title\":\"Effect of crista morphology on mitochondrial ATP output: A computational study\",\"authors\":\"Nasrin Afzal ,&nbsp;W. Jonathan Lederer ,&nbsp;M. Saleet Jafri ,&nbsp;Carmen A. Mannella\",\"doi\":\"10.1016/j.crphys.2021.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Folding of the mitochondrial inner membrane (IM) into cristae greatly increases the ATP-generating surface area, <em>S</em><sub><strong>IM</strong></sub>, per unit volume but also creates diffusional bottlenecks that could limit reaction rates inside mitochondria. This study explores possible effects of inner membrane folding on mitochondrial ATP output, using a mathematical model for energy metabolism developed by the Jafri group and two- and three-dimensional spatial models for mitochondria, implemented on the Virtual Cell platform. Simulations demonstrate that cristae are micro-compartments functionally distinct from the cytosol. At physiological steady states, standing gradients of ADP form inside cristae that depend on the size and shape of the compartments, and reduce local flux (rate per unit area) of the adenine nucleotide translocase. This causes matrix ADP levels to drop, which in turn reduces the flux of ATP synthase. The adverse effects of membrane folding on reaction fluxes increase with crista length and are greater for lamellar than tubular crista. However, total ATP output per mitochondrion is the product of flux of ATP synthase and <em>S</em><sub><strong>IM</strong></sub> which can be two-fold greater for mitochondria with lamellar than tubular cristae, resulting in greater ATP output for the former. The simulations also demonstrate the crucial role played by intracristal kinases (adenylate kinase, creatine kinase) in maintaining the energy advantage of IM folding.</p></div>\",\"PeriodicalId\":72753,\"journal\":{\"name\":\"Current research in physiology\",\"volume\":\"4 \",\"pages\":\"Pages 163-176\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.crphys.2021.03.005\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current research in physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665944121000146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current research in physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665944121000146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 19

摘要

线粒体内膜(IM)折叠成嵴极大地增加了单位体积产生atp的表面积(SIM),但也造成了扩散瓶颈,可能限制线粒体内的反应速率。本研究利用Jafri小组开发的能量代谢数学模型和在Virtual Cell平台上实现的线粒体二维和三维空间模型,探讨了内膜折叠对线粒体ATP输出的可能影响。模拟结果表明,嵴是与细胞质功能不同的微室。在生理稳定状态下,腺嘌呤核苷酸转位酶的局部通量(单位面积的速率)在嵴内形成依赖于隔室大小和形状的恒定梯度。这导致基质ADP水平下降,进而减少ATP合酶的通量。膜折叠对反应通量的不利影响随着膜嵴长度的增加而增加,板层状膜对反应通量的影响大于管状膜。然而,每个线粒体的总ATP输出是ATP合成酶和SIM通量的产物,对于具有片层状嵴的线粒体,其ATP输出可能是管状嵴的两倍,从而导致前者的ATP输出更多。模拟还证明了晶体内激酶(腺苷酸激酶,肌酸激酶)在维持IM折叠的能量优势方面发挥的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of crista morphology on mitochondrial ATP output: A computational study

Effect of crista morphology on mitochondrial ATP output: A computational study

Folding of the mitochondrial inner membrane (IM) into cristae greatly increases the ATP-generating surface area, SIM, per unit volume but also creates diffusional bottlenecks that could limit reaction rates inside mitochondria. This study explores possible effects of inner membrane folding on mitochondrial ATP output, using a mathematical model for energy metabolism developed by the Jafri group and two- and three-dimensional spatial models for mitochondria, implemented on the Virtual Cell platform. Simulations demonstrate that cristae are micro-compartments functionally distinct from the cytosol. At physiological steady states, standing gradients of ADP form inside cristae that depend on the size and shape of the compartments, and reduce local flux (rate per unit area) of the adenine nucleotide translocase. This causes matrix ADP levels to drop, which in turn reduces the flux of ATP synthase. The adverse effects of membrane folding on reaction fluxes increase with crista length and are greater for lamellar than tubular crista. However, total ATP output per mitochondrion is the product of flux of ATP synthase and SIM which can be two-fold greater for mitochondria with lamellar than tubular cristae, resulting in greater ATP output for the former. The simulations also demonstrate the crucial role played by intracristal kinases (adenylate kinase, creatine kinase) in maintaining the energy advantage of IM folding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
62 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信