Huajun Han, Arul Jayaraman, Stephen Safe, Robert S Chapkin
{"title":"靶向干细胞中芳烃受体,提高食品药用价值。","authors":"Huajun Han, Arul Jayaraman, Stephen Safe, Robert S Chapkin","doi":"10.1007/s40778-020-00184-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Intestinal stem cells, the most rapidly proliferating adult stem cells, are exquisitely sensitive to extrinsic dietary factors. Uncontrolled regulation of intestinal stem cells is closely linked to colon tumorigenesis. This review focuses on how dietary and microbial derived cues regulate intestinal stem cell functionality and colon tumorigenesis in mouse models by targeting the aryl hydrocarbon receptor (AhR).</p><p><strong>Recent findings: </strong>AhR, a ligand activated transcription factor, can integrate environmental, dietary and microbial cues to modulate intestinal stem cell proliferation, differentiation and their microenvironment, affecting colon cancer risk. Modulation of AhR activity is associated with many chronic diseases, including inflammatory bowel diseases where AhR expression is protective.</p><p><strong>Summary: </strong>AhR signaling controls the maintenance and differentiation of intestinal stem cells, influences local niche factors, and plays a protective role in colon tumorigenesis. Mounting evidence suggests that extrinsic nutritional/dietary cues which modulate AhR signaling may be a promising approach to colon cancer chemoprevention.</p>","PeriodicalId":37444,"journal":{"name":"Current Stem Cell Reports","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40778-020-00184-0","citationCount":"5","resultStr":"{\"title\":\"Targeting the aryl hydrocarbon receptor in stem cells to improve the use of food as medicine.\",\"authors\":\"Huajun Han, Arul Jayaraman, Stephen Safe, Robert S Chapkin\",\"doi\":\"10.1007/s40778-020-00184-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Intestinal stem cells, the most rapidly proliferating adult stem cells, are exquisitely sensitive to extrinsic dietary factors. Uncontrolled regulation of intestinal stem cells is closely linked to colon tumorigenesis. This review focuses on how dietary and microbial derived cues regulate intestinal stem cell functionality and colon tumorigenesis in mouse models by targeting the aryl hydrocarbon receptor (AhR).</p><p><strong>Recent findings: </strong>AhR, a ligand activated transcription factor, can integrate environmental, dietary and microbial cues to modulate intestinal stem cell proliferation, differentiation and their microenvironment, affecting colon cancer risk. Modulation of AhR activity is associated with many chronic diseases, including inflammatory bowel diseases where AhR expression is protective.</p><p><strong>Summary: </strong>AhR signaling controls the maintenance and differentiation of intestinal stem cells, influences local niche factors, and plays a protective role in colon tumorigenesis. Mounting evidence suggests that extrinsic nutritional/dietary cues which modulate AhR signaling may be a promising approach to colon cancer chemoprevention.</p>\",\"PeriodicalId\":37444,\"journal\":{\"name\":\"Current Stem Cell Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40778-020-00184-0\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Stem Cell Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40778-020-00184-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Stem Cell Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40778-020-00184-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Targeting the aryl hydrocarbon receptor in stem cells to improve the use of food as medicine.
Purpose of review: Intestinal stem cells, the most rapidly proliferating adult stem cells, are exquisitely sensitive to extrinsic dietary factors. Uncontrolled regulation of intestinal stem cells is closely linked to colon tumorigenesis. This review focuses on how dietary and microbial derived cues regulate intestinal stem cell functionality and colon tumorigenesis in mouse models by targeting the aryl hydrocarbon receptor (AhR).
Recent findings: AhR, a ligand activated transcription factor, can integrate environmental, dietary and microbial cues to modulate intestinal stem cell proliferation, differentiation and their microenvironment, affecting colon cancer risk. Modulation of AhR activity is associated with many chronic diseases, including inflammatory bowel diseases where AhR expression is protective.
Summary: AhR signaling controls the maintenance and differentiation of intestinal stem cells, influences local niche factors, and plays a protective role in colon tumorigenesis. Mounting evidence suggests that extrinsic nutritional/dietary cues which modulate AhR signaling may be a promising approach to colon cancer chemoprevention.
期刊介绍:
The goal of this journal is to publish cutting-edge reviews on subjects pertinent to all aspects of stem cell research, therapy, ethics, commercialization, and policy. We aim to provide incisive, insightful, and balanced contributions from leading experts in each relevant domain that will be of immediate interest to a wide readership of clinicians, basic scientists, and translational investigators.
We accomplish this aim by appointing major authorities to serve as Section Editors in key subject areas across the discipline. Section Editors select topics to be reviewed by leading experts who emphasize recent developments and highlight important papers published over the past year on their topics, in a crisp and readable format. We also provide commentaries from well-known figures in the field, and an Editorial Board of internationally diverse members suggests topics of special interest to their country/region and ensures that topics are current and include emerging research.