Brandy Murovec, Julia Spaniol, Jennifer L Campos, Behrang Keshavarz
{"title":"幻觉自我运动(Vection)的多感官效应:视觉、听觉和触觉线索的作用。","authors":"Brandy Murovec, Julia Spaniol, Jennifer L Campos, Behrang Keshavarz","doi":"10.1163/22134808-bja10058","DOIUrl":null,"url":null,"abstract":"<p><p>A critical component to many immersive experiences in virtual reality (VR) is vection, defined as the illusion of self-motion. Traditionally, vection has been described as a visual phenomenon, but more recent research suggests that vection can be influenced by a variety of senses. The goal of the present study was to investigate the role of multisensory cues on vection by manipulating the availability of visual, auditory, and tactile stimuli in a VR setting. To achieve this, 24 adults (Mage = 25.04) were presented with a rotating stimulus aimed to induce circular vection. All participants completed trials that included a single sensory cue, a combination of two cues, or all three cues presented together. The size of the field of view (FOV) was manipulated across four levels (no-visuals, small, medium, full). Participants rated vection intensity and duration verbally after each trial. Results showed that all three sensory cues induced vection when presented in isolation, with visual cues eliciting the highest intensity and longest duration. The presence of auditory and tactile cues further increased vection intensity and duration compared to conditions where these cues were not presented. These findings support the idea that vection can be induced via multiple types of sensory inputs and can be intensified when multiple sensory inputs are combined.</p>","PeriodicalId":51298,"journal":{"name":"Multisensory Research","volume":" ","pages":"1-22"},"PeriodicalIF":1.8000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multisensory Effects on Illusory Self-Motion (Vection): the Role of Visual, Auditory, and Tactile Cues.\",\"authors\":\"Brandy Murovec, Julia Spaniol, Jennifer L Campos, Behrang Keshavarz\",\"doi\":\"10.1163/22134808-bja10058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A critical component to many immersive experiences in virtual reality (VR) is vection, defined as the illusion of self-motion. Traditionally, vection has been described as a visual phenomenon, but more recent research suggests that vection can be influenced by a variety of senses. The goal of the present study was to investigate the role of multisensory cues on vection by manipulating the availability of visual, auditory, and tactile stimuli in a VR setting. To achieve this, 24 adults (Mage = 25.04) were presented with a rotating stimulus aimed to induce circular vection. All participants completed trials that included a single sensory cue, a combination of two cues, or all three cues presented together. The size of the field of view (FOV) was manipulated across four levels (no-visuals, small, medium, full). Participants rated vection intensity and duration verbally after each trial. Results showed that all three sensory cues induced vection when presented in isolation, with visual cues eliciting the highest intensity and longest duration. The presence of auditory and tactile cues further increased vection intensity and duration compared to conditions where these cues were not presented. These findings support the idea that vection can be induced via multiple types of sensory inputs and can be intensified when multiple sensory inputs are combined.</p>\",\"PeriodicalId\":51298,\"journal\":{\"name\":\"Multisensory Research\",\"volume\":\" \",\"pages\":\"1-22\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multisensory Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1163/22134808-bja10058\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multisensory Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1163/22134808-bja10058","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Multisensory Effects on Illusory Self-Motion (Vection): the Role of Visual, Auditory, and Tactile Cues.
A critical component to many immersive experiences in virtual reality (VR) is vection, defined as the illusion of self-motion. Traditionally, vection has been described as a visual phenomenon, but more recent research suggests that vection can be influenced by a variety of senses. The goal of the present study was to investigate the role of multisensory cues on vection by manipulating the availability of visual, auditory, and tactile stimuli in a VR setting. To achieve this, 24 adults (Mage = 25.04) were presented with a rotating stimulus aimed to induce circular vection. All participants completed trials that included a single sensory cue, a combination of two cues, or all three cues presented together. The size of the field of view (FOV) was manipulated across four levels (no-visuals, small, medium, full). Participants rated vection intensity and duration verbally after each trial. Results showed that all three sensory cues induced vection when presented in isolation, with visual cues eliciting the highest intensity and longest duration. The presence of auditory and tactile cues further increased vection intensity and duration compared to conditions where these cues were not presented. These findings support the idea that vection can be induced via multiple types of sensory inputs and can be intensified when multiple sensory inputs are combined.
期刊介绍:
Multisensory Research is an interdisciplinary archival journal covering all aspects of multisensory processing including the control of action, cognition and attention. Research using any approach to increase our understanding of multisensory perceptual, behavioural, neural and computational mechanisms is encouraged. Empirical, neurophysiological, psychophysical, brain imaging, clinical, developmental, mathematical and computational analyses are welcome. Research will also be considered covering multisensory applications such as sensory substitution, crossmodal methods for delivering sensory information or multisensory approaches to robotics and engineering. Short communications and technical notes that draw attention to new developments will be included, as will reviews and commentaries on current issues. Special issues dealing with specific topics will be announced from time to time. Multisensory Research is a continuation of Seeing and Perceiving, and of Spatial Vision.