Minqi Liang, Ruochen Cao, Kai Di, Daorui Han, Zhongmin Hu
{"title":"中国温带草原植被对十年干旱期的抵抗力和恢复力","authors":"Minqi Liang, Ruochen Cao, Kai Di, Daorui Han, Zhongmin Hu","doi":"10.1002/ece3.7866","DOIUrl":null,"url":null,"abstract":"<p>The duration of climate anomalies has been increasing across the globe, leading to ecosystem function loss. Thus, we need to understand the responses of the ecosystem to long-term climate anomalies. It remains unclear how ecosystem resistance and resilience respond to long-term climate anomalies, for example, continuous dry years at a regional scale. Taking the opportunity of a 13-year dry period in the temperate grasslands in northern China, we quantified the resistance and resilience of the grassland in response to this periodic dry period. We found vegetation resistance to the dry period increased with mean annual precipitation (MAP), while resilience increased at first until at MAP of 250 mm and then decreased slightly. No trade-off between resistance and resilience was detected when MAP < 250 mm. Our results highlight that xeric ecosystems are most vulnerable to the long-term dry period. Given expected increases in drought severity and duration in the coming decades, our findings may be helpful to identify vulnerable ecosystems in the world for the purpose of adaptation.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"11 15","pages":"10582-10589"},"PeriodicalIF":2.3000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ece3.7866","citationCount":"11","resultStr":"{\"title\":\"Vegetation resistance and resilience to a decade-long dry period in the temperate grasslands in China\",\"authors\":\"Minqi Liang, Ruochen Cao, Kai Di, Daorui Han, Zhongmin Hu\",\"doi\":\"10.1002/ece3.7866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The duration of climate anomalies has been increasing across the globe, leading to ecosystem function loss. Thus, we need to understand the responses of the ecosystem to long-term climate anomalies. It remains unclear how ecosystem resistance and resilience respond to long-term climate anomalies, for example, continuous dry years at a regional scale. Taking the opportunity of a 13-year dry period in the temperate grasslands in northern China, we quantified the resistance and resilience of the grassland in response to this periodic dry period. We found vegetation resistance to the dry period increased with mean annual precipitation (MAP), while resilience increased at first until at MAP of 250 mm and then decreased slightly. No trade-off between resistance and resilience was detected when MAP < 250 mm. Our results highlight that xeric ecosystems are most vulnerable to the long-term dry period. Given expected increases in drought severity and duration in the coming decades, our findings may be helpful to identify vulnerable ecosystems in the world for the purpose of adaptation.</p>\",\"PeriodicalId\":11467,\"journal\":{\"name\":\"Ecology and Evolution\",\"volume\":\"11 15\",\"pages\":\"10582-10589\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/ece3.7866\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ece3.7866\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.7866","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Vegetation resistance and resilience to a decade-long dry period in the temperate grasslands in China
The duration of climate anomalies has been increasing across the globe, leading to ecosystem function loss. Thus, we need to understand the responses of the ecosystem to long-term climate anomalies. It remains unclear how ecosystem resistance and resilience respond to long-term climate anomalies, for example, continuous dry years at a regional scale. Taking the opportunity of a 13-year dry period in the temperate grasslands in northern China, we quantified the resistance and resilience of the grassland in response to this periodic dry period. We found vegetation resistance to the dry period increased with mean annual precipitation (MAP), while resilience increased at first until at MAP of 250 mm and then decreased slightly. No trade-off between resistance and resilience was detected when MAP < 250 mm. Our results highlight that xeric ecosystems are most vulnerable to the long-term dry period. Given expected increases in drought severity and duration in the coming decades, our findings may be helpful to identify vulnerable ecosystems in the world for the purpose of adaptation.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.