环境DNA元条形码:海洋鱼类群落生物多样性监测的新方法。

IF 14.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Masaki Miya
{"title":"环境DNA元条形码:海洋鱼类群落生物多样性监测的新方法。","authors":"Masaki Miya","doi":"10.1146/annurev-marine-041421-082251","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental DNA (eDNA) is genetic material that has been shed from macroorganisms. It has received increased attention as an indirect marker for biodiversity monitoring. This article reviews the current status of eDNA metabarcoding (simultaneous detection of multiple species) as a noninvasive and cost-effective approach for monitoring marine fish communities and discusses the prospects for this growing field. eDNA metabarcoding coamplifies short fragments of fish eDNA across a wide variety of taxa and, coupled with high-throughput sequencing technologies, allows massively parallel sequencing to be performed simultaneously for dozens to hundreds of samples. It can predict species richness in a given area, detect habitat segregation and biogeographic patterns from small to large spatial scales, and monitor the spatiotemporal dynamics of fish communities. In addition, it can detect an anthropogenic impact on fish communities through evaluation of their functional diversity. Recognizing the strengths and limitations of eDNA metabarcoding will help ensure that continuous biodiversity monitoring at multiple sites will be useful for ecosystem conservation and sustainable use of fishery resources, possibly contributing to achieving the targets of the United Nations' Sustainable Development Goal 14 for 2030.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":"14 ","pages":"161-185"},"PeriodicalIF":14.3000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Environmental DNA Metabarcoding: A Novel Method for Biodiversity Monitoring of Marine Fish Communities.\",\"authors\":\"Masaki Miya\",\"doi\":\"10.1146/annurev-marine-041421-082251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Environmental DNA (eDNA) is genetic material that has been shed from macroorganisms. It has received increased attention as an indirect marker for biodiversity monitoring. This article reviews the current status of eDNA metabarcoding (simultaneous detection of multiple species) as a noninvasive and cost-effective approach for monitoring marine fish communities and discusses the prospects for this growing field. eDNA metabarcoding coamplifies short fragments of fish eDNA across a wide variety of taxa and, coupled with high-throughput sequencing technologies, allows massively parallel sequencing to be performed simultaneously for dozens to hundreds of samples. It can predict species richness in a given area, detect habitat segregation and biogeographic patterns from small to large spatial scales, and monitor the spatiotemporal dynamics of fish communities. In addition, it can detect an anthropogenic impact on fish communities through evaluation of their functional diversity. Recognizing the strengths and limitations of eDNA metabarcoding will help ensure that continuous biodiversity monitoring at multiple sites will be useful for ecosystem conservation and sustainable use of fishery resources, possibly contributing to achieving the targets of the United Nations' Sustainable Development Goal 14 for 2030.</p>\",\"PeriodicalId\":55508,\"journal\":{\"name\":\"Annual Review of Marine Science\",\"volume\":\"14 \",\"pages\":\"161-185\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2022-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Marine Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-marine-041421-082251\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Marine Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-marine-041421-082251","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 50

摘要

环境DNA (Environmental DNA, eDNA)是从大型生物体内脱落的遗传物质。作为生物多样性监测的间接标志,它受到越来越多的关注。本文综述了eDNA元条形码(同时检测多物种)作为监测海洋鱼类群落的一种无创和经济有效的方法的现状,并讨论了这一发展领域的前景。eDNA元条形码可以在各种各样的分类群中扩增鱼类eDNA的短片段,再加上高通量测序技术,可以同时对数十到数百个样本进行大规模并行测序。它可以预测特定区域的物种丰富度,从小到大的空间尺度检测栖息地分离和生物地理格局,监测鱼类群落的时空动态。此外,它可以通过评估鱼类群落的功能多样性来检测人类活动对鱼类群落的影响。认识到eDNA元条形码的优势和局限性将有助于确保在多个地点进行持续的生物多样性监测,这将有助于生态系统保护和渔业资源的可持续利用,可能有助于实现联合国2030年可持续发展目标14的具体目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental DNA Metabarcoding: A Novel Method for Biodiversity Monitoring of Marine Fish Communities.

Environmental DNA (eDNA) is genetic material that has been shed from macroorganisms. It has received increased attention as an indirect marker for biodiversity monitoring. This article reviews the current status of eDNA metabarcoding (simultaneous detection of multiple species) as a noninvasive and cost-effective approach for monitoring marine fish communities and discusses the prospects for this growing field. eDNA metabarcoding coamplifies short fragments of fish eDNA across a wide variety of taxa and, coupled with high-throughput sequencing technologies, allows massively parallel sequencing to be performed simultaneously for dozens to hundreds of samples. It can predict species richness in a given area, detect habitat segregation and biogeographic patterns from small to large spatial scales, and monitor the spatiotemporal dynamics of fish communities. In addition, it can detect an anthropogenic impact on fish communities through evaluation of their functional diversity. Recognizing the strengths and limitations of eDNA metabarcoding will help ensure that continuous biodiversity monitoring at multiple sites will be useful for ecosystem conservation and sustainable use of fishery resources, possibly contributing to achieving the targets of the United Nations' Sustainable Development Goal 14 for 2030.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Marine Science
Annual Review of Marine Science 地学-地球化学与地球物理
CiteScore
33.60
自引率
0.60%
发文量
40
期刊介绍: The Annual Review of Marine Science, published since 2009, offers a comprehensive overview of the field. It covers various disciplines, including coastal and blue water oceanography (biological, chemical, geological, and physical), ecology, conservation, and technological advancements related to the marine environment. The journal's transition from gated to open access through Annual Reviews' Subscribe to Open program ensures that all articles are available under a CC BY license, promoting wider accessibility and dissemination of knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信