Zhengfang Duanmu, Wentao Liu, Zhongling Wang, Zhou Wang
{"title":"量化视觉图像质量:贝叶斯观点。","authors":"Zhengfang Duanmu, Wentao Liu, Zhongling Wang, Zhou Wang","doi":"10.1146/annurev-vision-100419-120301","DOIUrl":null,"url":null,"abstract":"<p><p>Image quality assessment (IQA) models aim to establish a quantitative relationship between visual images and their quality as perceived by human observers. IQA modeling plays a special bridging role between vision science and engineering practice, both as a test-bed for vision theories and computational biovision models and as a powerful tool that could potentially have a profound impact on a broad range of image processing, computer vision, and computer graphics applications for design, optimization, and evaluation purposes. The growth of IQA research has accelerated over the past two decades. In this review, we present an overview of IQA methods from a Bayesian perspective, with the goals of unifying a wide spectrum of IQA approaches under a common framework and providing useful references to fundamental concepts accessible to vision scientists and image processing practitioners. We discuss the implications of the successes and limitations of modern IQA methods for biological vision and the prospect for vision science to inform the design of future artificial vision systems. (The detailed model taxonomy can be found at <b>http://ivc.uwaterloo.ca/research/bayesianIQA/</b>.).</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Quantifying Visual Image Quality: A Bayesian View.\",\"authors\":\"Zhengfang Duanmu, Wentao Liu, Zhongling Wang, Zhou Wang\",\"doi\":\"10.1146/annurev-vision-100419-120301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Image quality assessment (IQA) models aim to establish a quantitative relationship between visual images and their quality as perceived by human observers. IQA modeling plays a special bridging role between vision science and engineering practice, both as a test-bed for vision theories and computational biovision models and as a powerful tool that could potentially have a profound impact on a broad range of image processing, computer vision, and computer graphics applications for design, optimization, and evaluation purposes. The growth of IQA research has accelerated over the past two decades. In this review, we present an overview of IQA methods from a Bayesian perspective, with the goals of unifying a wide spectrum of IQA approaches under a common framework and providing useful references to fundamental concepts accessible to vision scientists and image processing practitioners. We discuss the implications of the successes and limitations of modern IQA methods for biological vision and the prospect for vision science to inform the design of future artificial vision systems. (The detailed model taxonomy can be found at <b>http://ivc.uwaterloo.ca/research/bayesianIQA/</b>.).</p>\",\"PeriodicalId\":48658,\"journal\":{\"name\":\"Annual Review of Vision Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Vision Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-vision-100419-120301\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-vision-100419-120301","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Quantifying Visual Image Quality: A Bayesian View.
Image quality assessment (IQA) models aim to establish a quantitative relationship between visual images and their quality as perceived by human observers. IQA modeling plays a special bridging role between vision science and engineering practice, both as a test-bed for vision theories and computational biovision models and as a powerful tool that could potentially have a profound impact on a broad range of image processing, computer vision, and computer graphics applications for design, optimization, and evaluation purposes. The growth of IQA research has accelerated over the past two decades. In this review, we present an overview of IQA methods from a Bayesian perspective, with the goals of unifying a wide spectrum of IQA approaches under a common framework and providing useful references to fundamental concepts accessible to vision scientists and image processing practitioners. We discuss the implications of the successes and limitations of modern IQA methods for biological vision and the prospect for vision science to inform the design of future artificial vision systems. (The detailed model taxonomy can be found at http://ivc.uwaterloo.ca/research/bayesianIQA/.).
期刊介绍:
The Annual Review of Vision Science reviews progress in the visual sciences, a cross-cutting set of disciplines which intersect psychology, neuroscience, computer science, cell biology and genetics, and clinical medicine. The journal covers a broad range of topics and techniques, including optics, retina, central visual processing, visual perception, eye movements, visual development, vision models, computer vision, and the mechanisms of visual disease, dysfunction, and sight restoration. The study of vision is central to progress in many areas of science, and this new journal will explore and expose the connections that link it to biology, behavior, computation, engineering, and medicine.