{"title":"预测的抗病毒药物Darunavir、Amprenavir、金刚乙胺和沙奎那韦可能结合以中和SARS-CoV-2保守蛋白。","authors":"Umesh C Halder","doi":"10.1186/s40709-021-00149-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Novel Coronavirus disease 2019 or COVID-19 has become a threat to human society due to fast spreading and increasing mortality. It uses vertebrate hosts and presently deploys humans. Life cycle and pathogenicity of SARS-CoV-2 have already been deciphered and possible drug target trials are on the way.</p><p><strong>Results: </strong>The present study was aimed to analyze Non-Structural Proteins that include conserved enzymes of SARS-CoV-2 like papain-like protease, main protease, Replicase, RNA-dependent RNA polymerase, methyltransferase, helicase, exoribonuclease and endoribonucleaseas targets to all known drugs. A bioinformatic based web server Drug ReposeER predicted several drug binding motifs in these analyzed proteins. Results revealed that anti-viral drugs Darunavir,Amprenavir, Rimantadine and Saquinavir were the most potent to have 3D-drug binding motifs that were closely associated with the active sites of the SARS-CoV-2 enzymes .</p><p><strong>Conclusions: </strong> Repurposing of the antiviral drugs Darunavir, Amprenavir, Rimantadine and Saquinavir to treat COVID-19 patients could be useful that can potentially prevent human mortality.</p>","PeriodicalId":50251,"journal":{"name":"Journal of Biological Research-Thessaloniki","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8331326/pdf/","citationCount":"7","resultStr":"{\"title\":\"Predicted antiviral drugs Darunavir, Amprenavir, Rimantadine and Saquinavir can potentially bind to neutralize SARS-CoV-2 conserved proteins.\",\"authors\":\"Umesh C Halder\",\"doi\":\"10.1186/s40709-021-00149-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Novel Coronavirus disease 2019 or COVID-19 has become a threat to human society due to fast spreading and increasing mortality. It uses vertebrate hosts and presently deploys humans. Life cycle and pathogenicity of SARS-CoV-2 have already been deciphered and possible drug target trials are on the way.</p><p><strong>Results: </strong>The present study was aimed to analyze Non-Structural Proteins that include conserved enzymes of SARS-CoV-2 like papain-like protease, main protease, Replicase, RNA-dependent RNA polymerase, methyltransferase, helicase, exoribonuclease and endoribonucleaseas targets to all known drugs. A bioinformatic based web server Drug ReposeER predicted several drug binding motifs in these analyzed proteins. Results revealed that anti-viral drugs Darunavir,Amprenavir, Rimantadine and Saquinavir were the most potent to have 3D-drug binding motifs that were closely associated with the active sites of the SARS-CoV-2 enzymes .</p><p><strong>Conclusions: </strong> Repurposing of the antiviral drugs Darunavir, Amprenavir, Rimantadine and Saquinavir to treat COVID-19 patients could be useful that can potentially prevent human mortality.</p>\",\"PeriodicalId\":50251,\"journal\":{\"name\":\"Journal of Biological Research-Thessaloniki\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8331326/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Research-Thessaloniki\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40709-021-00149-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Research-Thessaloniki","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40709-021-00149-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Predicted antiviral drugs Darunavir, Amprenavir, Rimantadine and Saquinavir can potentially bind to neutralize SARS-CoV-2 conserved proteins.
Background: Novel Coronavirus disease 2019 or COVID-19 has become a threat to human society due to fast spreading and increasing mortality. It uses vertebrate hosts and presently deploys humans. Life cycle and pathogenicity of SARS-CoV-2 have already been deciphered and possible drug target trials are on the way.
Results: The present study was aimed to analyze Non-Structural Proteins that include conserved enzymes of SARS-CoV-2 like papain-like protease, main protease, Replicase, RNA-dependent RNA polymerase, methyltransferase, helicase, exoribonuclease and endoribonucleaseas targets to all known drugs. A bioinformatic based web server Drug ReposeER predicted several drug binding motifs in these analyzed proteins. Results revealed that anti-viral drugs Darunavir,Amprenavir, Rimantadine and Saquinavir were the most potent to have 3D-drug binding motifs that were closely associated with the active sites of the SARS-CoV-2 enzymes .
Conclusions: Repurposing of the antiviral drugs Darunavir, Amprenavir, Rimantadine and Saquinavir to treat COVID-19 patients could be useful that can potentially prevent human mortality.
期刊介绍:
Journal of Biological Research-Thessaloniki is a peer-reviewed, open access, international journal that publishes articles providing novel insights into the major fields of biology.
Topics covered in Journal of Biological Research-Thessaloniki include, but are not limited to: molecular biology, cytology, genetics, evolutionary biology, morphology, development and differentiation, taxonomy, bioinformatics, physiology, marine biology, behaviour, ecology and conservation.