Gert Bange, Ditlev E Brodersen, Anastasia Liuzzi, Wieland Steinchen
{"title":"两个P或不是两个P:理解细菌第二信使(P)ppGpp的调控。","authors":"Gert Bange, Ditlev E Brodersen, Anastasia Liuzzi, Wieland Steinchen","doi":"10.1146/annurev-micro-042621-122343","DOIUrl":null,"url":null,"abstract":"<p><p>Under stressful growth conditions and nutrient starvation, bacteria adapt by synthesizing signaling molecules that profoundly reprogram cellular physiology. At the onset of this process, called the stringent response, members of the RelA/SpoT homolog (RSH) protein superfamily are activated by specific stress stimuli to produce several hyperphosphorylated forms of guanine nucleotides, commonly referred to as (p)ppGpp. Some bifunctional RSH enzymes also harbor domains that allow for degradation of (p)ppGpp by hydrolysis. (p)ppGpp synthesis or hydrolysis may further be executed by single-domain alarmone synthetases or hydrolases, respectively. The downstream effects of (p)ppGpp rely mainly on direct interaction with specific intracellular effectors, which are widely used throughout most cellular processes. The growing number of identified (p)ppGpp targets allows us to deduce both common features of and differences between gram-negative and gram-positive bacteria. In this review, we give an overview of (p)ppGpp metabolism with a focus on the functional and structural aspects of the enzymes involved and discuss recent findings on alarmone-regulated cellular effectors.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"75 ","pages":"383-406"},"PeriodicalIF":8.5000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Two P or Not Two P: Understanding Regulation by the Bacterial Second Messengers (p)ppGpp.\",\"authors\":\"Gert Bange, Ditlev E Brodersen, Anastasia Liuzzi, Wieland Steinchen\",\"doi\":\"10.1146/annurev-micro-042621-122343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Under stressful growth conditions and nutrient starvation, bacteria adapt by synthesizing signaling molecules that profoundly reprogram cellular physiology. At the onset of this process, called the stringent response, members of the RelA/SpoT homolog (RSH) protein superfamily are activated by specific stress stimuli to produce several hyperphosphorylated forms of guanine nucleotides, commonly referred to as (p)ppGpp. Some bifunctional RSH enzymes also harbor domains that allow for degradation of (p)ppGpp by hydrolysis. (p)ppGpp synthesis or hydrolysis may further be executed by single-domain alarmone synthetases or hydrolases, respectively. The downstream effects of (p)ppGpp rely mainly on direct interaction with specific intracellular effectors, which are widely used throughout most cellular processes. The growing number of identified (p)ppGpp targets allows us to deduce both common features of and differences between gram-negative and gram-positive bacteria. In this review, we give an overview of (p)ppGpp metabolism with a focus on the functional and structural aspects of the enzymes involved and discuss recent findings on alarmone-regulated cellular effectors.</p>\",\"PeriodicalId\":7946,\"journal\":{\"name\":\"Annual review of microbiology\",\"volume\":\"75 \",\"pages\":\"383-406\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2021-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-micro-042621-122343\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-micro-042621-122343","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Two P or Not Two P: Understanding Regulation by the Bacterial Second Messengers (p)ppGpp.
Under stressful growth conditions and nutrient starvation, bacteria adapt by synthesizing signaling molecules that profoundly reprogram cellular physiology. At the onset of this process, called the stringent response, members of the RelA/SpoT homolog (RSH) protein superfamily are activated by specific stress stimuli to produce several hyperphosphorylated forms of guanine nucleotides, commonly referred to as (p)ppGpp. Some bifunctional RSH enzymes also harbor domains that allow for degradation of (p)ppGpp by hydrolysis. (p)ppGpp synthesis or hydrolysis may further be executed by single-domain alarmone synthetases or hydrolases, respectively. The downstream effects of (p)ppGpp rely mainly on direct interaction with specific intracellular effectors, which are widely used throughout most cellular processes. The growing number of identified (p)ppGpp targets allows us to deduce both common features of and differences between gram-negative and gram-positive bacteria. In this review, we give an overview of (p)ppGpp metabolism with a focus on the functional and structural aspects of the enzymes involved and discuss recent findings on alarmone-regulated cellular effectors.
期刊介绍:
Annual Review of Microbiology is a Medical and Microbiology Journal and published by Annual Reviews Inc. The Annual Review of Microbiology, in publication since 1947, covers significant developments in the field of microbiology, encompassing bacteria, archaea, viruses, and unicellular eukaryotes. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The Impact Factor of Annual Review of Microbiology is 10.242 (2024) Impact factor. The Annual Review of Microbiology Journal is Indexed with Pubmed, Scopus, UGC (University Grants Commission).