Jolanta Weresa, Anna Pędzińska-Betiuk, Eberhard Schlicker, Grzegorz Hirnle, Maciej Mitrosz, Barbara Malinowska
{"title":"CB1和CB2受体拮抗剂对人和原发性高血压大鼠心房β-肾上腺素能受体激活相关的变时和变肌效应的有益和有害影响。","authors":"Jolanta Weresa, Anna Pędzińska-Betiuk, Eberhard Schlicker, Grzegorz Hirnle, Maciej Mitrosz, Barbara Malinowska","doi":"10.1111/1440-1681.13560","DOIUrl":null,"url":null,"abstract":"<p><p>We have previously shown that cannabinoid CB<sub>1</sub> and CB<sub>2</sub> receptor antagonists, AM251 and AM630, respectively, modulate cardiostimulatory effects of isoprenaline in atria of Wistar rats. The aim of the present study was to examine whether such modulatory effects can also be observed (a) in the human atrium and (b) in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Inotropic effects of isoprenaline and/or CGP12177 (that activate the high- and low-affinity site of β<sub>1</sub> -adrenoceptors, respectively) were examined in paced human atrial trabeculae and rat left atria; chronotropic effects were studied in spontaneously beating right rat atria. AM251 modified cardiostimulatory effects more strongly than AM630. Therefore, AM251 (1 μM) enhanced the chronotropic effect of isoprenaline in WKY and SHR as well as inotropic action of isoprenaline in WKY and in human atria. It also increased the inotropic influence of CGP12177 in SHR. AM630 (1 μM) decreased the inotropic effect of isoprenaline and CGP12177 in WKY, but enhanced the isoprenaline-induced inotropic effect in SHR and human atria. Furthermore, AM251 (0.1 and 3 μM) and AM630 (0.1 μM) reduced the inotropic action of isoprenaline in human atria. In conclusion, cannabinoid receptor antagonists have potentially harmful and beneficial effects through their amplificatory effects on β-adrenoceptor-mediated positive chronotropic and inotropic actions, respectively.</p>","PeriodicalId":10259,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"48 11","pages":"1547-1557"},"PeriodicalIF":2.4000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1440-1681.13560","citationCount":"0","resultStr":"{\"title\":\"Beneficial and harmful effects of CB<sub>1</sub> and CB<sub>2</sub> receptor antagonists on chronotropic and inotropic effects related to atrial β-adrenoceptor activation in humans and in rats with primary hypertension.\",\"authors\":\"Jolanta Weresa, Anna Pędzińska-Betiuk, Eberhard Schlicker, Grzegorz Hirnle, Maciej Mitrosz, Barbara Malinowska\",\"doi\":\"10.1111/1440-1681.13560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have previously shown that cannabinoid CB<sub>1</sub> and CB<sub>2</sub> receptor antagonists, AM251 and AM630, respectively, modulate cardiostimulatory effects of isoprenaline in atria of Wistar rats. The aim of the present study was to examine whether such modulatory effects can also be observed (a) in the human atrium and (b) in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Inotropic effects of isoprenaline and/or CGP12177 (that activate the high- and low-affinity site of β<sub>1</sub> -adrenoceptors, respectively) were examined in paced human atrial trabeculae and rat left atria; chronotropic effects were studied in spontaneously beating right rat atria. AM251 modified cardiostimulatory effects more strongly than AM630. Therefore, AM251 (1 μM) enhanced the chronotropic effect of isoprenaline in WKY and SHR as well as inotropic action of isoprenaline in WKY and in human atria. It also increased the inotropic influence of CGP12177 in SHR. AM630 (1 μM) decreased the inotropic effect of isoprenaline and CGP12177 in WKY, but enhanced the isoprenaline-induced inotropic effect in SHR and human atria. Furthermore, AM251 (0.1 and 3 μM) and AM630 (0.1 μM) reduced the inotropic action of isoprenaline in human atria. In conclusion, cannabinoid receptor antagonists have potentially harmful and beneficial effects through their amplificatory effects on β-adrenoceptor-mediated positive chronotropic and inotropic actions, respectively.</p>\",\"PeriodicalId\":10259,\"journal\":{\"name\":\"Clinical and Experimental Pharmacology and Physiology\",\"volume\":\"48 11\",\"pages\":\"1547-1557\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/1440-1681.13560\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Pharmacology and Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/1440-1681.13560\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/1440-1681.13560","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Beneficial and harmful effects of CB1 and CB2 receptor antagonists on chronotropic and inotropic effects related to atrial β-adrenoceptor activation in humans and in rats with primary hypertension.
We have previously shown that cannabinoid CB1 and CB2 receptor antagonists, AM251 and AM630, respectively, modulate cardiostimulatory effects of isoprenaline in atria of Wistar rats. The aim of the present study was to examine whether such modulatory effects can also be observed (a) in the human atrium and (b) in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Inotropic effects of isoprenaline and/or CGP12177 (that activate the high- and low-affinity site of β1 -adrenoceptors, respectively) were examined in paced human atrial trabeculae and rat left atria; chronotropic effects were studied in spontaneously beating right rat atria. AM251 modified cardiostimulatory effects more strongly than AM630. Therefore, AM251 (1 μM) enhanced the chronotropic effect of isoprenaline in WKY and SHR as well as inotropic action of isoprenaline in WKY and in human atria. It also increased the inotropic influence of CGP12177 in SHR. AM630 (1 μM) decreased the inotropic effect of isoprenaline and CGP12177 in WKY, but enhanced the isoprenaline-induced inotropic effect in SHR and human atria. Furthermore, AM251 (0.1 and 3 μM) and AM630 (0.1 μM) reduced the inotropic action of isoprenaline in human atria. In conclusion, cannabinoid receptor antagonists have potentially harmful and beneficial effects through their amplificatory effects on β-adrenoceptor-mediated positive chronotropic and inotropic actions, respectively.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.