Paweł Piszko, Bartłomiej Kryszak, Aleksandra Piszko, Konrad Szustakiewicz
{"title":"聚癸二酸甘油是一种新兴的生物医学用途聚酯:结构、性能和改性。","authors":"Paweł Piszko, Bartłomiej Kryszak, Aleksandra Piszko, Konrad Szustakiewicz","doi":"10.17219/pim/139585","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(glycerol sebacate) (PGS) is an aliphatic polyester which attracted significant scientific attention in recent years due to its vast potential in biomedical applications with regard to tissue engineering. It has been presented in the literature in the form of 2D films, porous scaffolds or nonwovens, to name just a few. Moreover, various applications have been proposed as a component of composite materials or polymer blends. Its physicochemical properties can be significantly adjusted by means of synthesis and post-synthetic modifications, including cross-linking or chemical modification, such as copolymerization. Many scientists have discussed PGS as a new-generation polymer for biomedical applications. Its regenerative potential has been confirmed, in particular, in tissue engineering of soft tissues (including nerve, cartilage and cardiac tissues). Therefore, we must anticipate a growing importance of PGS in contemporary biomedical applications. This brief review aims to familiarize the readers with this relatively new polymeric material for tissue engineering applications.</p>","PeriodicalId":20355,"journal":{"name":"Polimery w medycynie","volume":"51 1","pages":"43-50"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Brief review on poly(glycerol sebacate) as an emerging polyester in biomedical application: Structure, properties and modifications.\",\"authors\":\"Paweł Piszko, Bartłomiej Kryszak, Aleksandra Piszko, Konrad Szustakiewicz\",\"doi\":\"10.17219/pim/139585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poly(glycerol sebacate) (PGS) is an aliphatic polyester which attracted significant scientific attention in recent years due to its vast potential in biomedical applications with regard to tissue engineering. It has been presented in the literature in the form of 2D films, porous scaffolds or nonwovens, to name just a few. Moreover, various applications have been proposed as a component of composite materials or polymer blends. Its physicochemical properties can be significantly adjusted by means of synthesis and post-synthetic modifications, including cross-linking or chemical modification, such as copolymerization. Many scientists have discussed PGS as a new-generation polymer for biomedical applications. Its regenerative potential has been confirmed, in particular, in tissue engineering of soft tissues (including nerve, cartilage and cardiac tissues). Therefore, we must anticipate a growing importance of PGS in contemporary biomedical applications. This brief review aims to familiarize the readers with this relatively new polymeric material for tissue engineering applications.</p>\",\"PeriodicalId\":20355,\"journal\":{\"name\":\"Polimery w medycynie\",\"volume\":\"51 1\",\"pages\":\"43-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polimery w medycynie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17219/pim/139585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polimery w medycynie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17219/pim/139585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Brief review on poly(glycerol sebacate) as an emerging polyester in biomedical application: Structure, properties and modifications.
Poly(glycerol sebacate) (PGS) is an aliphatic polyester which attracted significant scientific attention in recent years due to its vast potential in biomedical applications with regard to tissue engineering. It has been presented in the literature in the form of 2D films, porous scaffolds or nonwovens, to name just a few. Moreover, various applications have been proposed as a component of composite materials or polymer blends. Its physicochemical properties can be significantly adjusted by means of synthesis and post-synthetic modifications, including cross-linking or chemical modification, such as copolymerization. Many scientists have discussed PGS as a new-generation polymer for biomedical applications. Its regenerative potential has been confirmed, in particular, in tissue engineering of soft tissues (including nerve, cartilage and cardiac tissues). Therefore, we must anticipate a growing importance of PGS in contemporary biomedical applications. This brief review aims to familiarize the readers with this relatively new polymeric material for tissue engineering applications.