Francesco Roncato, Ofer Regev, Sandeep Kumar Yadav, Ronen Alon
{"title":"微管失稳是黑色素瘤细胞趋化性和跨内皮迁移的关键检查点,而不是T细胞。","authors":"Francesco Roncato, Ofer Regev, Sandeep Kumar Yadav, Ronen Alon","doi":"10.1080/19336918.2021.1934958","DOIUrl":null,"url":null,"abstract":"<p><p>Microtubules (MTs) control cell shape and intracellular cargo transport. The role of MT turnover in the migration of slow-moving cells through endothelial barriers remains unclear. To irreversibly interfere with MT disassembly, we have used the MT-stabilizing agent zampanolide (ZMP) in Β16F10 melanoma as amodel of slow-moving cells. ZMP-treated B16 cells failed to follow chemotactic gradients across rigid confinements and could not generate stable sub-endothelial pseudopodia under endothelial monolayers. In vivo, ZMP-treated Β16 cells failed to extravasate though lung capillaries. In contrast to melanoma cells, the chemotaxis and transendothelial migration of ZMP-treated Tcells were largely conserved. This is afirst demonstration that MT disassembly is akey checkpoint in the directional migration of cancer cells but not of lymphocytes.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"15 1","pages":"166-179"},"PeriodicalIF":3.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2021.1934958","citationCount":"2","resultStr":"{\"title\":\"Microtubule destabilization is a critical checkpoint of chemotaxis and transendothelial migration in melanoma cells but not in T cells.\",\"authors\":\"Francesco Roncato, Ofer Regev, Sandeep Kumar Yadav, Ronen Alon\",\"doi\":\"10.1080/19336918.2021.1934958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microtubules (MTs) control cell shape and intracellular cargo transport. The role of MT turnover in the migration of slow-moving cells through endothelial barriers remains unclear. To irreversibly interfere with MT disassembly, we have used the MT-stabilizing agent zampanolide (ZMP) in Β16F10 melanoma as amodel of slow-moving cells. ZMP-treated B16 cells failed to follow chemotactic gradients across rigid confinements and could not generate stable sub-endothelial pseudopodia under endothelial monolayers. In vivo, ZMP-treated Β16 cells failed to extravasate though lung capillaries. In contrast to melanoma cells, the chemotaxis and transendothelial migration of ZMP-treated Tcells were largely conserved. This is afirst demonstration that MT disassembly is akey checkpoint in the directional migration of cancer cells but not of lymphocytes.</p>\",\"PeriodicalId\":9680,\"journal\":{\"name\":\"Cell Adhesion & Migration\",\"volume\":\"15 1\",\"pages\":\"166-179\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19336918.2021.1934958\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Adhesion & Migration\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19336918.2021.1934958\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2021.1934958","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Microtubule destabilization is a critical checkpoint of chemotaxis and transendothelial migration in melanoma cells but not in T cells.
Microtubules (MTs) control cell shape and intracellular cargo transport. The role of MT turnover in the migration of slow-moving cells through endothelial barriers remains unclear. To irreversibly interfere with MT disassembly, we have used the MT-stabilizing agent zampanolide (ZMP) in Β16F10 melanoma as amodel of slow-moving cells. ZMP-treated B16 cells failed to follow chemotactic gradients across rigid confinements and could not generate stable sub-endothelial pseudopodia under endothelial monolayers. In vivo, ZMP-treated Β16 cells failed to extravasate though lung capillaries. In contrast to melanoma cells, the chemotaxis and transendothelial migration of ZMP-treated Tcells were largely conserved. This is afirst demonstration that MT disassembly is akey checkpoint in the directional migration of cancer cells but not of lymphocytes.
期刊介绍:
Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field.
Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.