Erin R Pletcher, Nicole M Bordelon, Gretchen D Oliver, Mita Lovalekar, Keith Gorse, Takashi Nagai, Chris Connaboy
{"title":"模拟比赛对高中和大学女子垒球投手肌肉力量的影响。","authors":"Erin R Pletcher, Nicole M Bordelon, Gretchen D Oliver, Mita Lovalekar, Keith Gorse, Takashi Nagai, Chris Connaboy","doi":"10.1080/14763141.2021.1941229","DOIUrl":null,"url":null,"abstract":"<p><p>Softball pitchers often pitch several games within a day and over consecutive days during a competitive season. High volumes of pitches thrown can decrease muscular strength, resulting in less proximal force generation and upper extremity compensation to maintain performance. Therefore, the purpose of this study was to assess upper and lower extremity muscular strength after pitching in a simulated game. Fourteen softball pitchers (17.9 ± 2.3 years, 166.4 ± 8.7 cm, 72.2 ± 12.6 kg) completed baseline isokinetic strength assessment for knee, hip, trunk and pitching elbow flexion and extension as well as trunk rotation. Seven days later, participants pitched a simulated game consisting of 105 fastballs prior to repeating all strength assessments. Changes in muscular strength were assessed using paired samples t-tests, with significance set <i>a priori</i> as p ≤ 0.05. Normalised (%BW) stride leg knee extension peak torque was significantly higher (p = 0.020) post-simulated game (75.1 ± 24.6%BW) as compared to baseline (64.0 ± 19.5%BW) and trunk flexion peak torque was significantly higher (p = 0.009) post-simulated game (84.8 ± 47.0%BW) as compared to baseline (63.5 ± 47.1%BW). This study showed an increase in knee extension and trunk flexion strength after an acute bout of pitching. The findings give insight into muscular changes following pitching which can assist in appropriate softball training and recovery.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1210-1218"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of a simulated game on muscular strength in female high-school and collegiate softball pitchers.\",\"authors\":\"Erin R Pletcher, Nicole M Bordelon, Gretchen D Oliver, Mita Lovalekar, Keith Gorse, Takashi Nagai, Chris Connaboy\",\"doi\":\"10.1080/14763141.2021.1941229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Softball pitchers often pitch several games within a day and over consecutive days during a competitive season. High volumes of pitches thrown can decrease muscular strength, resulting in less proximal force generation and upper extremity compensation to maintain performance. Therefore, the purpose of this study was to assess upper and lower extremity muscular strength after pitching in a simulated game. Fourteen softball pitchers (17.9 ± 2.3 years, 166.4 ± 8.7 cm, 72.2 ± 12.6 kg) completed baseline isokinetic strength assessment for knee, hip, trunk and pitching elbow flexion and extension as well as trunk rotation. Seven days later, participants pitched a simulated game consisting of 105 fastballs prior to repeating all strength assessments. Changes in muscular strength were assessed using paired samples t-tests, with significance set <i>a priori</i> as p ≤ 0.05. Normalised (%BW) stride leg knee extension peak torque was significantly higher (p = 0.020) post-simulated game (75.1 ± 24.6%BW) as compared to baseline (64.0 ± 19.5%BW) and trunk flexion peak torque was significantly higher (p = 0.009) post-simulated game (84.8 ± 47.0%BW) as compared to baseline (63.5 ± 47.1%BW). This study showed an increase in knee extension and trunk flexion strength after an acute bout of pitching. The findings give insight into muscular changes following pitching which can assist in appropriate softball training and recovery.</p>\",\"PeriodicalId\":49482,\"journal\":{\"name\":\"Sports Biomechanics\",\"volume\":\" \",\"pages\":\"1210-1218\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14763141.2021.1941229\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/6/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2021.1941229","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The influence of a simulated game on muscular strength in female high-school and collegiate softball pitchers.
Softball pitchers often pitch several games within a day and over consecutive days during a competitive season. High volumes of pitches thrown can decrease muscular strength, resulting in less proximal force generation and upper extremity compensation to maintain performance. Therefore, the purpose of this study was to assess upper and lower extremity muscular strength after pitching in a simulated game. Fourteen softball pitchers (17.9 ± 2.3 years, 166.4 ± 8.7 cm, 72.2 ± 12.6 kg) completed baseline isokinetic strength assessment for knee, hip, trunk and pitching elbow flexion and extension as well as trunk rotation. Seven days later, participants pitched a simulated game consisting of 105 fastballs prior to repeating all strength assessments. Changes in muscular strength were assessed using paired samples t-tests, with significance set a priori as p ≤ 0.05. Normalised (%BW) stride leg knee extension peak torque was significantly higher (p = 0.020) post-simulated game (75.1 ± 24.6%BW) as compared to baseline (64.0 ± 19.5%BW) and trunk flexion peak torque was significantly higher (p = 0.009) post-simulated game (84.8 ± 47.0%BW) as compared to baseline (63.5 ± 47.1%BW). This study showed an increase in knee extension and trunk flexion strength after an acute bout of pitching. The findings give insight into muscular changes following pitching which can assist in appropriate softball training and recovery.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.