{"title":"新热带地区植物标本馆标本中多种元素的x射线荧光筛选揭示了植物中金属积累的新记录。","authors":"Célestine Belloeil, Pierre Jouannais, Charles Malfaisan, Rolando Reyes Fernández, Severine Lopez, Dulce Montserrat Navarrete Gutierrez, Swann Maeder-Pras, Paola Villanueva, Romane Tisserand, Melina Gallopin, Dubiel Alfonso-Gonzalez, Ilsa M Fuentes Marrero, Serge Muller, Vanessa Invernon, Yohan Pillon, Guillaume Echevarria, Rosalina Berazaín Iturralde, Sylvain Merlot","doi":"10.1093/mtomcs/mfab045","DOIUrl":null,"url":null,"abstract":"<p><p>Plants have developed a diversity of strategies to take up and store essential metals in order to colonize various types of soils including mineralized soils. Yet, our knowledge of the capacity of plant species to accumulate metals is still fragmentary across the plant kingdom. In this study, we have used the X-ray fluorescence technology to analyze metal concentration in a wide diversity of species of the Neotropical flora that was not extensively investigated so far. In total, we screened more than 11 000 specimens representing about 5000 species from herbaria in Paris and Cuba. Our study provides a large overview of the accumulation of metals such as manganese, zinc, and nickel in the Neotropical flora. We report 30 new nickel hyperaccumulating species from Cuba, including the first records in the families Connaraceae, Melastomataceae, Polygonaceae, Santalaceae, and Urticaceae. We also identified the first species from this region of the world that can be considered as manganese hyperaccumulators in the genera Lomatia (Proteaceae), Calycogonium (Melastomataceae), Ilex (Aquifoliaceae), Morella (Myricaceae), and Pimenta (Myrtaceae). Finally, we report the first zinc hyperaccumulator, Rinorea multivenosa (Violaceae), from the Amazonas region. The identification of species able to accumulate high amounts of metals will become instrumental to support the development of phytotechnologies in order to limit the impact of soil metal pollution in this region of the world.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The X-ray fluorescence screening of multiple elements in herbarium specimens from the Neotropical region reveals new records of metal accumulation in plants.\",\"authors\":\"Célestine Belloeil, Pierre Jouannais, Charles Malfaisan, Rolando Reyes Fernández, Severine Lopez, Dulce Montserrat Navarrete Gutierrez, Swann Maeder-Pras, Paola Villanueva, Romane Tisserand, Melina Gallopin, Dubiel Alfonso-Gonzalez, Ilsa M Fuentes Marrero, Serge Muller, Vanessa Invernon, Yohan Pillon, Guillaume Echevarria, Rosalina Berazaín Iturralde, Sylvain Merlot\",\"doi\":\"10.1093/mtomcs/mfab045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants have developed a diversity of strategies to take up and store essential metals in order to colonize various types of soils including mineralized soils. Yet, our knowledge of the capacity of plant species to accumulate metals is still fragmentary across the plant kingdom. In this study, we have used the X-ray fluorescence technology to analyze metal concentration in a wide diversity of species of the Neotropical flora that was not extensively investigated so far. In total, we screened more than 11 000 specimens representing about 5000 species from herbaria in Paris and Cuba. Our study provides a large overview of the accumulation of metals such as manganese, zinc, and nickel in the Neotropical flora. We report 30 new nickel hyperaccumulating species from Cuba, including the first records in the families Connaraceae, Melastomataceae, Polygonaceae, Santalaceae, and Urticaceae. We also identified the first species from this region of the world that can be considered as manganese hyperaccumulators in the genera Lomatia (Proteaceae), Calycogonium (Melastomataceae), Ilex (Aquifoliaceae), Morella (Myricaceae), and Pimenta (Myrtaceae). Finally, we report the first zinc hyperaccumulator, Rinorea multivenosa (Violaceae), from the Amazonas region. The identification of species able to accumulate high amounts of metals will become instrumental to support the development of phytotechnologies in order to limit the impact of soil metal pollution in this region of the world.</p>\",\"PeriodicalId\":89,\"journal\":{\"name\":\"Metallomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/mtomcs/mfab045\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfab045","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The X-ray fluorescence screening of multiple elements in herbarium specimens from the Neotropical region reveals new records of metal accumulation in plants.
Plants have developed a diversity of strategies to take up and store essential metals in order to colonize various types of soils including mineralized soils. Yet, our knowledge of the capacity of plant species to accumulate metals is still fragmentary across the plant kingdom. In this study, we have used the X-ray fluorescence technology to analyze metal concentration in a wide diversity of species of the Neotropical flora that was not extensively investigated so far. In total, we screened more than 11 000 specimens representing about 5000 species from herbaria in Paris and Cuba. Our study provides a large overview of the accumulation of metals such as manganese, zinc, and nickel in the Neotropical flora. We report 30 new nickel hyperaccumulating species from Cuba, including the first records in the families Connaraceae, Melastomataceae, Polygonaceae, Santalaceae, and Urticaceae. We also identified the first species from this region of the world that can be considered as manganese hyperaccumulators in the genera Lomatia (Proteaceae), Calycogonium (Melastomataceae), Ilex (Aquifoliaceae), Morella (Myricaceae), and Pimenta (Myrtaceae). Finally, we report the first zinc hyperaccumulator, Rinorea multivenosa (Violaceae), from the Amazonas region. The identification of species able to accumulate high amounts of metals will become instrumental to support the development of phytotechnologies in order to limit the impact of soil metal pollution in this region of the world.