Sofia Mogren, Frida Berlin, Sangeetha Ramu, Asger Sverrild, Celeste Porsbjerg, Lena Uller, Cecilia K Andersson
{"title":"肥大细胞胰蛋白酶通过促进人支气管上皮细胞的迁移来促进伤口愈合。","authors":"Sofia Mogren, Frida Berlin, Sangeetha Ramu, Asger Sverrild, Celeste Porsbjerg, Lena Uller, Cecilia K Andersson","doi":"10.1080/19336918.2021.1950594","DOIUrl":null,"url":null,"abstract":"<p><p>Epithelial damage and increase of intraepithelial mast cells (MC) are characteristics of asthma. The role of MC mediator tryptase and the protease-activated receptor-2 (PAR2) on epithelial wound healing is not fully investigated. Stimulation of bronchial epithelial cells (BECs) with tryptase promoted gap closure, migration and cellular speed compared to controls. Stimulated BECs had higher expression of migration marker CD151 compared to controls. Proliferation marker KI67 was upregulated in tryptase-stimulated BECs compared to controls. Treatment with PAR2 antagonist I-191 reduced gap closure, migration and cell speed compared to BECs stimulated with tryptase. We found that tryptase enhances epithelial wound healing by increased migration and proliferation, which is in part regulated via PAR2. Our data suggest that tryptase might be beneficial in tissue repair under baseline conditions. However, in a pathological context such as asthma with increased numbers of activated MCs, it might lead to epithelial remodeling and loss of function.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"15 1","pages":"202-214"},"PeriodicalIF":3.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2021.1950594","citationCount":"8","resultStr":"{\"title\":\"Mast cell tryptase enhances wound healing by promoting migration in human bronchial epithelial cells.\",\"authors\":\"Sofia Mogren, Frida Berlin, Sangeetha Ramu, Asger Sverrild, Celeste Porsbjerg, Lena Uller, Cecilia K Andersson\",\"doi\":\"10.1080/19336918.2021.1950594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epithelial damage and increase of intraepithelial mast cells (MC) are characteristics of asthma. The role of MC mediator tryptase and the protease-activated receptor-2 (PAR2) on epithelial wound healing is not fully investigated. Stimulation of bronchial epithelial cells (BECs) with tryptase promoted gap closure, migration and cellular speed compared to controls. Stimulated BECs had higher expression of migration marker CD151 compared to controls. Proliferation marker KI67 was upregulated in tryptase-stimulated BECs compared to controls. Treatment with PAR2 antagonist I-191 reduced gap closure, migration and cell speed compared to BECs stimulated with tryptase. We found that tryptase enhances epithelial wound healing by increased migration and proliferation, which is in part regulated via PAR2. Our data suggest that tryptase might be beneficial in tissue repair under baseline conditions. However, in a pathological context such as asthma with increased numbers of activated MCs, it might lead to epithelial remodeling and loss of function.</p>\",\"PeriodicalId\":9680,\"journal\":{\"name\":\"Cell Adhesion & Migration\",\"volume\":\"15 1\",\"pages\":\"202-214\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19336918.2021.1950594\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Adhesion & Migration\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19336918.2021.1950594\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2021.1950594","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Mast cell tryptase enhances wound healing by promoting migration in human bronchial epithelial cells.
Epithelial damage and increase of intraepithelial mast cells (MC) are characteristics of asthma. The role of MC mediator tryptase and the protease-activated receptor-2 (PAR2) on epithelial wound healing is not fully investigated. Stimulation of bronchial epithelial cells (BECs) with tryptase promoted gap closure, migration and cellular speed compared to controls. Stimulated BECs had higher expression of migration marker CD151 compared to controls. Proliferation marker KI67 was upregulated in tryptase-stimulated BECs compared to controls. Treatment with PAR2 antagonist I-191 reduced gap closure, migration and cell speed compared to BECs stimulated with tryptase. We found that tryptase enhances epithelial wound healing by increased migration and proliferation, which is in part regulated via PAR2. Our data suggest that tryptase might be beneficial in tissue repair under baseline conditions. However, in a pathological context such as asthma with increased numbers of activated MCs, it might lead to epithelial remodeling and loss of function.
期刊介绍:
Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field.
Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.