Hai Thi Thuy Cao, Takashi Nakamura, Tadashi Toyama, Kei Nishida
{"title":"用氧化-反硝化和气相扩散相结合的方法测定溶解有机氮的氮同位素。","authors":"Hai Thi Thuy Cao, Takashi Nakamura, Tadashi Toyama, Kei Nishida","doi":"10.1080/10256016.2021.1948411","DOIUrl":null,"url":null,"abstract":"<p><p>Isotopic tracing technique is one of the most effective methods to identify nitrogen source and fate in aquatic environments. Although dissolved organic nitrogen (DON) is a key component in nitrogen cycles, information on nitrogen stable isotope ratios in DON (<i>δ</i><sup>15</sup>N-DON) is limitedly available for its low recovery through a direct measurement. Indirect measurement is based on mass balance calculations and easy to use with high recovery of DON. However, in theory, the result from mass balance calculation is sensitive to the level of DON content, and its applicability remains to be examined for waters containing a variety of DON content in total dissolved nitrogen (TDN). In this study, we established a protocol for indirect measurement of <i>δ</i><sup>15</sup>N-DON values based on the combination of multiple analytical methods. Precision and accuracy in the measurement were assessed by varying the composition of DON and dissolved inorganic nitrogen, and quantitation thresholds were presented at different acceptable levels. The results illustrated an advantage of the developed protocol possibly applicable to water samples particularly with low DON content that is commonly detected in freshwater. This method is expected to expand the use of isotope tracing techniques for understanding the nitrogen cycle in water environments.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10256016.2021.1948411","citationCount":"3","resultStr":"{\"title\":\"A protocol for nitrogen isotopic measurement of dissolved organic nitrogen with a combination of oxidation-denitrification and gas phase diffusion methods.\",\"authors\":\"Hai Thi Thuy Cao, Takashi Nakamura, Tadashi Toyama, Kei Nishida\",\"doi\":\"10.1080/10256016.2021.1948411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Isotopic tracing technique is one of the most effective methods to identify nitrogen source and fate in aquatic environments. Although dissolved organic nitrogen (DON) is a key component in nitrogen cycles, information on nitrogen stable isotope ratios in DON (<i>δ</i><sup>15</sup>N-DON) is limitedly available for its low recovery through a direct measurement. Indirect measurement is based on mass balance calculations and easy to use with high recovery of DON. However, in theory, the result from mass balance calculation is sensitive to the level of DON content, and its applicability remains to be examined for waters containing a variety of DON content in total dissolved nitrogen (TDN). In this study, we established a protocol for indirect measurement of <i>δ</i><sup>15</sup>N-DON values based on the combination of multiple analytical methods. Precision and accuracy in the measurement were assessed by varying the composition of DON and dissolved inorganic nitrogen, and quantitation thresholds were presented at different acceptable levels. The results illustrated an advantage of the developed protocol possibly applicable to water samples particularly with low DON content that is commonly detected in freshwater. This method is expected to expand the use of isotope tracing techniques for understanding the nitrogen cycle in water environments.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10256016.2021.1948411\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10256016.2021.1948411\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10256016.2021.1948411","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A protocol for nitrogen isotopic measurement of dissolved organic nitrogen with a combination of oxidation-denitrification and gas phase diffusion methods.
Isotopic tracing technique is one of the most effective methods to identify nitrogen source and fate in aquatic environments. Although dissolved organic nitrogen (DON) is a key component in nitrogen cycles, information on nitrogen stable isotope ratios in DON (δ15N-DON) is limitedly available for its low recovery through a direct measurement. Indirect measurement is based on mass balance calculations and easy to use with high recovery of DON. However, in theory, the result from mass balance calculation is sensitive to the level of DON content, and its applicability remains to be examined for waters containing a variety of DON content in total dissolved nitrogen (TDN). In this study, we established a protocol for indirect measurement of δ15N-DON values based on the combination of multiple analytical methods. Precision and accuracy in the measurement were assessed by varying the composition of DON and dissolved inorganic nitrogen, and quantitation thresholds were presented at different acceptable levels. The results illustrated an advantage of the developed protocol possibly applicable to water samples particularly with low DON content that is commonly detected in freshwater. This method is expected to expand the use of isotope tracing techniques for understanding the nitrogen cycle in water environments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.