Ashwani Kumar Gupta, David Z Ivancic, Bilal A Naved, Jason A Wertheim, Leif Oxburgh
{"title":"在空气-液体界面生成肾脏有机体的有效方法。","authors":"Ashwani Kumar Gupta, David Z Ivancic, Bilal A Naved, Jason A Wertheim, Leif Oxburgh","doi":"10.14440/jbm.2021.357","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence of kidney dysfunction continues to increase worldwide, driving the need to develop transplantable renal tissues. The kidney develops from four major renal progenitor populations: nephron epithelial, ureteric epithelial, interstitial and endothelial progenitors. Methods have been developed to generate kidney organoids but few or dispersed tubular clusters within the organoids hamper its use in regenerative applications. Here, we describe a detailed protocol of asynchronous mixing of kidney progenitors using organotypic culture conditions to generate kidney organoids tightly packed with tubular clusters and major renal structures including endothelial network and functional proximal tubules. This protocol provides guidance in the culture of human embryonic stem cells from a National Institute of Health-approved line and their directed differentiation into kidney organoids. Our 18-day protocol provides a rapid method to generate kidney organoids that facilitate the study of different nephrological events including <i>in vitro</i> tissue development, disease modeling and chemical screening. However, further studies are required to optimize the protocol to generate additional renal-specific cell types, interconnected nephron segments and physiologically functional renal tissues.</p>","PeriodicalId":73618,"journal":{"name":"Journal of biological methods","volume":"8 2","pages":"e150"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/f6/jbm-8-2-e150.PMC8270790.pdf","citationCount":"0","resultStr":"{\"title\":\"An efficient method to generate kidney organoids at the air-liquid interface.\",\"authors\":\"Ashwani Kumar Gupta, David Z Ivancic, Bilal A Naved, Jason A Wertheim, Leif Oxburgh\",\"doi\":\"10.14440/jbm.2021.357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prevalence of kidney dysfunction continues to increase worldwide, driving the need to develop transplantable renal tissues. The kidney develops from four major renal progenitor populations: nephron epithelial, ureteric epithelial, interstitial and endothelial progenitors. Methods have been developed to generate kidney organoids but few or dispersed tubular clusters within the organoids hamper its use in regenerative applications. Here, we describe a detailed protocol of asynchronous mixing of kidney progenitors using organotypic culture conditions to generate kidney organoids tightly packed with tubular clusters and major renal structures including endothelial network and functional proximal tubules. This protocol provides guidance in the culture of human embryonic stem cells from a National Institute of Health-approved line and their directed differentiation into kidney organoids. Our 18-day protocol provides a rapid method to generate kidney organoids that facilitate the study of different nephrological events including <i>in vitro</i> tissue development, disease modeling and chemical screening. However, further studies are required to optimize the protocol to generate additional renal-specific cell types, interconnected nephron segments and physiologically functional renal tissues.</p>\",\"PeriodicalId\":73618,\"journal\":{\"name\":\"Journal of biological methods\",\"volume\":\"8 2\",\"pages\":\"e150\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/f6/jbm-8-2-e150.PMC8270790.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biological methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14440/jbm.2021.357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biological methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14440/jbm.2021.357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient method to generate kidney organoids at the air-liquid interface.
The prevalence of kidney dysfunction continues to increase worldwide, driving the need to develop transplantable renal tissues. The kidney develops from four major renal progenitor populations: nephron epithelial, ureteric epithelial, interstitial and endothelial progenitors. Methods have been developed to generate kidney organoids but few or dispersed tubular clusters within the organoids hamper its use in regenerative applications. Here, we describe a detailed protocol of asynchronous mixing of kidney progenitors using organotypic culture conditions to generate kidney organoids tightly packed with tubular clusters and major renal structures including endothelial network and functional proximal tubules. This protocol provides guidance in the culture of human embryonic stem cells from a National Institute of Health-approved line and their directed differentiation into kidney organoids. Our 18-day protocol provides a rapid method to generate kidney organoids that facilitate the study of different nephrological events including in vitro tissue development, disease modeling and chemical screening. However, further studies are required to optimize the protocol to generate additional renal-specific cell types, interconnected nephron segments and physiologically functional renal tissues.