{"title":"Levenstein距离、序列比对与生物数据库检索","authors":"Bonnie Berger;Michael S. Waterman;Yun William Yu","doi":"10.1109/TIT.2020.2996543","DOIUrl":null,"url":null,"abstract":"Levenshtein edit distance has played a central role-both past and present-in sequence alignment in particular and biological database similarity search in general. We start our review with a history of dynamic programming algorithms for computing Levenshtein distance and sequence alignments. Following, we describe how those algorithms led to heuristics employed in the most widely used software in bioinformatics, BLAST, a program to search DNA and protein databases for evolutionarily relevant similarities. More recently, the advent of modern genomic sequencing and the volume of data it generates has resulted in a return to the problem of local alignment. We conclude with how the mathematical formulation of Levenshtein distance as a metric made possible additional optimizations to similarity search in biological contexts. These modern optimizations are built around the low metric entropy and fractional dimensionality of biological databases, enabling orders of magnitude acceleration of biological similarity search.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"67 6","pages":"3287-3294"},"PeriodicalIF":2.2000,"publicationDate":"2020-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TIT.2020.2996543","citationCount":"39","resultStr":"{\"title\":\"Levenshtein Distance, Sequence Comparison and Biological Database Search\",\"authors\":\"Bonnie Berger;Michael S. Waterman;Yun William Yu\",\"doi\":\"10.1109/TIT.2020.2996543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Levenshtein edit distance has played a central role-both past and present-in sequence alignment in particular and biological database similarity search in general. We start our review with a history of dynamic programming algorithms for computing Levenshtein distance and sequence alignments. Following, we describe how those algorithms led to heuristics employed in the most widely used software in bioinformatics, BLAST, a program to search DNA and protein databases for evolutionarily relevant similarities. More recently, the advent of modern genomic sequencing and the volume of data it generates has resulted in a return to the problem of local alignment. We conclude with how the mathematical formulation of Levenshtein distance as a metric made possible additional optimizations to similarity search in biological contexts. These modern optimizations are built around the low metric entropy and fractional dimensionality of biological databases, enabling orders of magnitude acceleration of biological similarity search.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"67 6\",\"pages\":\"3287-3294\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2020-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TIT.2020.2996543\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9097943/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9097943/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Levenshtein Distance, Sequence Comparison and Biological Database Search
Levenshtein edit distance has played a central role-both past and present-in sequence alignment in particular and biological database similarity search in general. We start our review with a history of dynamic programming algorithms for computing Levenshtein distance and sequence alignments. Following, we describe how those algorithms led to heuristics employed in the most widely used software in bioinformatics, BLAST, a program to search DNA and protein databases for evolutionarily relevant similarities. More recently, the advent of modern genomic sequencing and the volume of data it generates has resulted in a return to the problem of local alignment. We conclude with how the mathematical formulation of Levenshtein distance as a metric made possible additional optimizations to similarity search in biological contexts. These modern optimizations are built around the low metric entropy and fractional dimensionality of biological databases, enabling orders of magnitude acceleration of biological similarity search.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.