Mohammed M Gad, Mouna Al-Sunni, Abrar Al-Shayeb, Reyam Al-Namsy, Zainab Al-Naser, Soban Q Khan
{"title":"体外添加白色指甲花对白色念珠菌黏附及义齿基托树脂物理性能的影响。","authors":"Mohammed M Gad, Mouna Al-Sunni, Abrar Al-Shayeb, Reyam Al-Namsy, Zainab Al-Naser, Soban Q Khan","doi":"10.26650/eor.20210033","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This in-vitro study evaluated and compared the effect of white henna (WH) and natural henna (NH) addition on Candida albicans adhesion and physical properties of the denture base material.</p><p><strong>Materials and methods: </strong>A total of 243 acrylic resin specimens (9 per group) were divided as follows: 81 for flexural strength, 81 for Candida albicans adherence test, and 81 for surface roughness, translucency, and hardness. Heat-polymerized acrylic resin specimens were prepared by adding 0.5, 1.0, 1.5, or 2.0 wt% of WH or NH. Candida albicans adhesion was determined using direct culture and slide count methods. Flexural strength, surface roughness, hardness, and translucency were measured using the three-point bending test, profilometer, Vickers hardness test, and spectrophotometer, respectively. ANOVA and post hoc Tukey's tests were performed for data analysis.</p><p><strong>Results: </strong>Addition of 0.5% WH, 1% WH, and 0.5% NH to denture base resin significantly decreased Candida albicans adhesion (p<0.05). WH and NH significantly decreased the flexural strength and translucency, except 0.5% WH, and significantly increased surface roughness, except 0.5% WH and 0.5% NH. WH addition showed nonsignificant differences in the hardness, while NH addition significantly decreased hardness (p<0.05).</p><p><strong>Conclusion: </strong>Addition of WH and NH decreased C. albicans adhesion to PMMA denture base resin. However, flexural strength, translucency, and surface roughness were adversely affected, particularly at higher concentrations. Hardness was reduced with NH only.</p>","PeriodicalId":41993,"journal":{"name":"European Oral Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/eb/b5/eor-055-086.PMC8244940.pdf","citationCount":"3","resultStr":"{\"title\":\"The in-vitro effects of white henna addition on the Candida albicans adhesion and physical properties of denture base resin.\",\"authors\":\"Mohammed M Gad, Mouna Al-Sunni, Abrar Al-Shayeb, Reyam Al-Namsy, Zainab Al-Naser, Soban Q Khan\",\"doi\":\"10.26650/eor.20210033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This in-vitro study evaluated and compared the effect of white henna (WH) and natural henna (NH) addition on Candida albicans adhesion and physical properties of the denture base material.</p><p><strong>Materials and methods: </strong>A total of 243 acrylic resin specimens (9 per group) were divided as follows: 81 for flexural strength, 81 for Candida albicans adherence test, and 81 for surface roughness, translucency, and hardness. Heat-polymerized acrylic resin specimens were prepared by adding 0.5, 1.0, 1.5, or 2.0 wt% of WH or NH. Candida albicans adhesion was determined using direct culture and slide count methods. Flexural strength, surface roughness, hardness, and translucency were measured using the three-point bending test, profilometer, Vickers hardness test, and spectrophotometer, respectively. ANOVA and post hoc Tukey's tests were performed for data analysis.</p><p><strong>Results: </strong>Addition of 0.5% WH, 1% WH, and 0.5% NH to denture base resin significantly decreased Candida albicans adhesion (p<0.05). WH and NH significantly decreased the flexural strength and translucency, except 0.5% WH, and significantly increased surface roughness, except 0.5% WH and 0.5% NH. WH addition showed nonsignificant differences in the hardness, while NH addition significantly decreased hardness (p<0.05).</p><p><strong>Conclusion: </strong>Addition of WH and NH decreased C. albicans adhesion to PMMA denture base resin. However, flexural strength, translucency, and surface roughness were adversely affected, particularly at higher concentrations. Hardness was reduced with NH only.</p>\",\"PeriodicalId\":41993,\"journal\":{\"name\":\"European Oral Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/eb/b5/eor-055-086.PMC8244940.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Oral Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26650/eor.20210033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Oral Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26650/eor.20210033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
The in-vitro effects of white henna addition on the Candida albicans adhesion and physical properties of denture base resin.
Purpose: This in-vitro study evaluated and compared the effect of white henna (WH) and natural henna (NH) addition on Candida albicans adhesion and physical properties of the denture base material.
Materials and methods: A total of 243 acrylic resin specimens (9 per group) were divided as follows: 81 for flexural strength, 81 for Candida albicans adherence test, and 81 for surface roughness, translucency, and hardness. Heat-polymerized acrylic resin specimens were prepared by adding 0.5, 1.0, 1.5, or 2.0 wt% of WH or NH. Candida albicans adhesion was determined using direct culture and slide count methods. Flexural strength, surface roughness, hardness, and translucency were measured using the three-point bending test, profilometer, Vickers hardness test, and spectrophotometer, respectively. ANOVA and post hoc Tukey's tests were performed for data analysis.
Results: Addition of 0.5% WH, 1% WH, and 0.5% NH to denture base resin significantly decreased Candida albicans adhesion (p<0.05). WH and NH significantly decreased the flexural strength and translucency, except 0.5% WH, and significantly increased surface roughness, except 0.5% WH and 0.5% NH. WH addition showed nonsignificant differences in the hardness, while NH addition significantly decreased hardness (p<0.05).
Conclusion: Addition of WH and NH decreased C. albicans adhesion to PMMA denture base resin. However, flexural strength, translucency, and surface roughness were adversely affected, particularly at higher concentrations. Hardness was reduced with NH only.